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In "Opinion pooling on general agendas", we characterize linear and neutral
opinion pooling functions F : Pn ! P, where unlike in the classical opinion
pooling problem the agenda X of relevant events need not form a �-algebra.
These characterizations are based on two conditions on the pooling function:
independence and implication-preservation. The latter condition is stronger
than the standard (Pareto-like) condition of zero-preservation. In the present
appendix, (i) we show that our characterizations would not in general hold
if instead of implication-preservation we merely require zero-preservation; but
(ii) for an interesting class of agendas, zero-preservation (still together with
independence) su¢ ces to force pooling to be neutral (Theorem 3) while leaving
room for non-linear pooling (Theorem 4). These results suggest that without
invoking the requirement of implication-preservation a normative defense of
linear pooling becomes di¢ cult. The framework and notation is the same as in
the original paper.2

Say that a relevant event A 2 X conditionally entails another one B 2
X (written A `� B) if fAg [ Y entails B (i.e. \C2fAg[YC � B) for some
countable set Y � X that is consistent with A (i.e. \C2fAg[YC 6= ;) and
with Bc (i.e. \C2fBcg[YC 6= ;). The agenda X is pathconnected if for any
two events A;B 2 Xnf;;
g there exist events A1; :::; Ak 2 X (k � 1) such
that A = A1 `� A2 `� ::: `� Ak = B. In other words, any two contingent
events in the agenda can be connected by a path of conditional entailments.3

For instance, X := fA;Ac : A � R is a bounded intervalg is a pathconnected
agenda (a subset of the Borel-�-algebra � over 
 = R).4 One easily shows that

1The �rst version of the main paper still contained this appendix.
2Note however that, as zero-preservation does not anymore refer to the probability of

events outside the agenda X, one might for the purpose of the present appendix re-de�ne a
pooling function as a mapping from PnX to PX rather than for Pn to P, where PX is the set
of functions P : X ! [0; 1] that can be extended to a probability measure on �.

3Conditional entailment and pathconnecdness are closely related to the notions of condi-
tional entailment and total blockedness introduced in a binary (not probabilistic) setup by
Nehring and Puppe, "Strategy-proof social choice on single-peaked domains: possibility, im-
possibility and the space between", working paper (2002). The strategy to prove Theorem 3
reminds of arguments made in that paper (in particular, our lemma has an analogue in the
binary setup).

4For example, a path of conditional entailments between the intervals [0; 1] and [2; 3] can



pathconnected agendas are non-simple; but many non-simple agendas are not
pathconnected.

We now give a characterization of neutral pooling based on requiring just
zero-preservation, not implication-prerservation.

Theorem 3 (a) For a pathconnected agenda, every independent zero-preserving
pooling function is neutral.

(b) For a non-pathconnected �nite agenda, not every independent zero-preserving
pooling function is neutral.

So, for a pathconnected agenda, independence leads to neutrality. Does it
even lead to linearity? The answer is negative, as the next theorem shows.

Theorem 4 For some pathconnected agenda X (in some �-algebra � over some
set of worlds 
), not every neutral zero-preserving pooling function is linear.

The following lemma is central for proving part (a) of Theorem 3.

Lemma For any independent and zero-preserving pooling function, A `� B
implies DA � DB for all relevant events A;B 2 X (where DA : [0; 1]

n ! [0; 1]
is the local pooling criterion for A, and DB is that for B).

Proof. Let F;A;B;DA; DB be as speci�ed, and assume A `� B, say in virtue
of the set Y � X. Let x = (x1; :::; xn) 2 [0; 1]n. We show that DA(x) � DB(x).
As \C2fAg[YC has empty intersection with Bc (by the conditional entailment),
it equals its intersection with B; in particular, \C2fA;Bg[YC 6= ;. Similarly, as
\C2fBcg[YC has empty intersection with A, it equals its intersection with Ac; in
particular, \C2fAc;Bcg[YC 6= ;. Hence there are worlds ! 2 \C2fA;Bg[YC and
!0 2 \C2fAc;Bcg[YC. For each individual i, consider the probability measure
Pi : �! [0; 1] de�ned by

Pi := xi�! + (1� xi)�!0,

where �!; �!0 : � ! [0; 1] denote the Dirac-measures in ! and !0, respectively.
As each Pi satis�es Pi(A) = Pi(B) = xi, we have

PP1;:::;Pn(A) = DA(P1(A); :::; Pn(A)) = DA(x),

PP1;:::;Pn(B) = DB(P1(B); :::; Pn(B)) = DB(x).

Further, for each Pi and each C 2 Y we have Pi(C) = 1, so that PP1;:::;Pn(C) = 1
(by zero-preservation), and hence PP1;:::;Pn(\C2YC) = 1 since the intersection of

be constructed as follows: [0; 1] `� [0; 3] (one may conditionalise on the empty set of events
Y = ;, i.e. the entailment is unconditional), and [0; 3] `� [2; 3] (one may conditionalise on
Y = f[2; 4]g.
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countably many events of probability one has again probability one. So

PP1;:::;Pn(\C2fAg[YC) = PP1;:::;Pn(A) = DA(x),

PP1;:::;Pn(\C2fBg[YC) = PP1;:::;Pn(B) = DB(x).

Now PP1;:::;Pn(\C2fAg[YC) � PP1;:::;Pn(\C2fBg[YC) since

\C2fAg[YC = \C2fA;Bg[Y � \C2fBg[YC

(for the equality, see an earlier argument). So DA(x) � DB(x), as desired. �

Proof of Theorem 3. (a) Let X be pathconnected and F independent and
zero-preserving. If X = f;;
g, F is obviously neutral, as desired. Now let
X 6= f;;
g and write DA for the local pooling criterion of any contingent
event A 2 Xnf;;
g. As X is pathconnected, repeated application of the above
lemma yields DA � DB for all A;B 2 Xnf;;
g, and hence DA = DB for
all A;B 2 Xnf;;
g. De�ne D as the common pooling criterion DA of all
A 2 Xnf;;
g. We complete the neutrality proof by showing that D also works
as a pooling criterion for ; and 
. Consider any P1; :::; Pn 2 P. By de�nition
of probability measures,

P1(;) = ::: = Pn(;) = PP1;:::;Pn(;) = 0;
P1(
) = ::: = Pn(
) = PP1;:::;Pn(
) = 1.

So it su¢ ces to show that D(0; :::; 0) = 0 and D(1; :::; 1) = 1, which follows
from zero-preservation.

(b) Now let X be �nite and not pathconnected. By an argument in the main
paper, we may assume that the �-algebra generated byX is the entire �-algebra
�. Notationally, for any sub-�-algebra �� � �, let A(��) be its set of atoms (i.e.
with respect to set-inclusion minimal non-empty elements). We now de�ne a
pooling function and show that it has the desired properties. As an ingredient
to the de�nition, let D0 : [0; 1]n ! [0; 1] and D00 : [0; 1]n ! [0; 1] be the local
decision rules of two distinct linear pooling functions; and let �A 2 Xnf;;
g be
a (by assumption existing) event such that not for all A 2 Xnf;;
g there is
�A ``� A, where "``�" stands for the existence of a �nite path of conditional
entailments as in the de�nition of pathconnectedness. Consider any pro�le
(P1; :::; Pn) 2 Pn. To de�ne a probability measure PP1;:::;Pn : � ! [0; 1], we
start by de�ning probability measures on two sub-�-algebras of �, denoted �0

and �00 and de�ned as the �-algebras generated by the sets

X 0 : = fA 2 X : �A ``� B for both B 2 fA;Acgg,
X 00 : = fA 2 X : �A ``� B for no B 2 fA;Acgg,

respectively. Let P 0P1;:::;Pn : �
0 ! [0; 1] and P 00P1;:::;Pn : �

00 ! [0; 1] be de�ned by

P 0P1;:::;Pn(A) = D0(P1(A); :::; Pn(A)) for all A 2 �0,
P 00P1;:::;Pn(A) = D00(P1(A); :::; Pn(A)) for all A 2 �00.
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The functions are indeed probability measures (on �0 resp. �00), as they are
linear averages of of probability measures.

Claim 3. The �-algebras �0 and �00 are logically independent, that is: if
A0 2 �0 and A00 2 �00 are non-empty, so is A0 \ A00.
Suppose the contrary. Then, as each non-empty element of �0 is a superset

of an atom of �0 and hence of a non-empty intersection of events in X 0, and
similarly for �00, there are consistent sets Y 0 � X 0 and Y 00 � X 00 such that
Y 0 [ Y 00 is inconsistent. Let Y be a minimal inconsistent subset of Y 0 [ Y 00. Y
is not a subset of any of Y 0 and Y 00, because the latter sets are consistent. So
there are A 2 Y \ X 0 and B 2 Y \ X 00. Note that A `� Bc, a contradiction
since A 2 X 0 and Bc 2 X 00, q.e.d.

We now extend the measures P 0P1;:::;Pn and P
00
P1;:::;Pn

to a probability measure
on the �-algebra ~� generated by �0 [ �00, i.e. generated by X 0 [X 00, in such a
way that the events in �0 are probabilistically independent of those in �00. By
Claim 3, the atoms of ~� are precisely the intersections of an atom of �0 and one
of �00: A(~�) = fA0 \A00 : A0 2 A(�0); A00 2 A(�00)g. Let ~PP1;:::;Pn be the unique
measure on ~� that behaves as follows on the atoms:

~PP1;:::;Pn(A
0 \ A00) = P 0P1;:::;Pn(A

0)P 00P1;:::;Pn(A
00) (1)

for all A0 2 A(�0) and all A00 2 A(�00). This measure is indeed a probability
measure, becauseX

A2A(~�)

~PP1;:::;Pn(A) =
X

A02A(�0);A002A(�00)

P 0P1;:::;Pn(A
0)P 00P1;:::;Pn(A

00)

=
X

A02A(�0)

P 0P1;:::;Pn(A
0)

X
A002A(�00)

P 00P1;:::;Pn(A
00)| {z }

=1

= 1.

As one easily checks, restricting ~PP1;:::;Pn to �
0 resp. �00 gives P 0P1;:::;Pn resp.

P 00P1;:::;Pn, and so

~PP1;:::;Pn(A) =

�
D0(P1(A); :::; Pn(A)) for all A 2 �0
D00(P1(A); :::; Pn(A)) for all A 2 �00. (2)

Before we can extend ~PP1;:::;Pn to the full �-algebra �, we �rst prove another
claim. For all A 2 X such that �A ``� A but not �A ``� Ac, de�ne

AP1;:::;Pn :=

�
A if Pi(A) > 0 for some i
Ac if Pi(A) = 0 for all i.

Claim 4. For all atoms C of ~� (= �(X 0 [ X 00)) with ~PP1;:::;Pn(C) > 0, the
event C \ (\A2X: �A``�A and not �A``�AcAP1;:::;Pn) is an atom of �.
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Let C be as speci�ed, and write CP1;:::;Pn for the event in question. As noted
above, C takes the form C = A0 \ A00 with A0 2 A(�0) and A00 2 A(�00).
By P (C) > 0 and (1), we have ~PP1;:::;Pn(A

0) > 0 and ~PP1;:::;Pn(A
00) > 0. As

A0 2 A(�0), we may write A0 = \A2Y 0A for some set Y 0 � X 0 containing
exactly one member of each pair A;Ac 2 X 0. Similarly, A00 = \A2Y 00A for some
set Y 00 � X 00 containing exactly one member of each pair A;Ac 2 X 00. Note also
that \A2X: �A``�A and not �A``�AcAP1;:::;Pn can be written as \A2YP1;:::;PnA, where the
set

YP1;:::;Pn = fAP1;:::;Pn : A 2 X; �A ``� A; not �A ``� Acg
consists of exactly one member of each pair A;Ac 2 Xn(X 0 [ X 00). Thus
CP1;:::;Pn = \A2Y 0[Y 00[YP1;:::;PnA, where the set Y

0 [ Y 00 [ YP1;:::;Pn consists of ex-
actly one member of each pair A;Ac 2 X. So, as � is generated by X, CP1;:::;Pn
is either an atom or is empty. Hence it su¢ ces to show that CP1;:::;Pn 6= ;. Sup-
pose the contrary. Then Y 0 [ Y 00 [ YP1;:::;Pn is inconsistent, hence has a minimal
inconsistent subset Y . We distinguish two cases and derive a contradiction in
each.

Case 1: there is a B 2 Y \ YP1;:::;Pn with �A ``� B. Consider any B0 2
Y nfBg. We have (i) not �A ``� B0: otherwise, by B0 `� Bc we would have
�A ``� Bc, hence B 2 X 0, in contradiction to B 2 YP1;:::;Pn. Further, as �A ``�
B and B `� (B0)c, we have (ii) �A ``� (B0)c. By (i) and (ii), and letting
A := (B0)c, the event AP1;:::;Pn (2 fA;Acg) is well-de�ned. As YP1;:::;Pn contains
AP1;:::;Pn (2 fA;Acg), and contains B0 = Ac but not (B0)c = A, we must have
AP1;:::;Pn = A

c. So all i have Pi(A) = 0, i.e. all i have Pi(B0) = 1. Since this
holds for all B0 2 Y nfBg, all i have Pi(\B02YB0) = Pi(B). Hence, as Y is
inconsistent, all i have Pi(B) = 0. Hence, BP1;:::;Pn = B

c. So Bc 2 YP1;:::;Pn, in
contradiction to B 2 YP1;:::;Pn.
Case 2: there is noB 2 Y \YP1;:::;Pn with �A ``� B. Then all B 2 Y \YP1;:::;Pn

take the form AP1;:::;Pn = Ac, so that all i have Pi(A) = 0, i.e. all i have
Pi(B) = 1. So, (*) all i have Pi(\B2YB) = Pi(\B2Y nYP1;:::;PnB). Now, we have
either (i) Y � YP1;:::;Pn [ Y 0, or (ii) Y � YP1;:::;Pn [ Y 00, because otherwise there
exist an A0 2 Y 0 and an A00 2 Y 00, and we have A0 `� (A00)c, hence �A ``� (A00)c,
a contradiction by (A00)c 2 X 00. First suppose (i). Then Y nYP1;:::;Pn � Y 0, and
so (*) implies that (**) all i have Pi(\B2YB) � Pi(\B2Y 0B) = Pi(A0). As by
assumption ~PP1;:::;Pn(A

0) > 0, there exists by (2) at least one i with Pi(A0) > 0,
hence by (**) with Pi(\B2YB) > 0. So \B2YB 6= ;, i.e. Y is consistent,
a contradiction. Similarly, under (ii) one can show that Y is consistent, a
contradiction, q.e.d.

Now we de�ne PP1;:::;Pn as the unique measure � that assigns the following
measure to the atoms of �. If an atom takes the form in Claim 4, i.e. the form

B = C \ (\A2X: �A``�A and not �A``�AcAP1;:::;Pn)

where C 2 A(~�) and ~PP1;:::;Pn(C) > 0, then we de�ne its measure as

PP1;:::;Pn(B) = ~PP1;:::;Pn(C).
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Any other atom has measure de�ned as zero.

Claim 5. PP1;:::;Pn extends ~PP1;:::;Pn (hence, is a probability measure).

It su¢ ces to show that PP1;:::;Pn coincides with ~PP1;:::;Pn on A(~�). Consider
any C 2 A(~�). As � is a re�nement of ~�, we have

PP1;:::;Pn(C) =
X

B2A(�):B�C

PP1;:::;Pn(B): (3)

There are two cases.

Case 1: ~PP1;:::;Pn(C) = 0. Then for all B 2 A(�) with B � C we have
PP1;:::;Pn(B) = 0 (by de�nition of PP1;:::;Pn), and so by (3) we have PP1;:::;Pn(C) =
0 = ~PP1;:::;Pn(C), as desired.

Case 2: ~PP1;:::;Pn(C) > 0. Then, among all atoms B 2 A(�) with B � C,
there exists (by de�nition of PP1;:::;Pn) exactly one with PP1;:::;Pn(B) > 0 (namely
B = C \ (\A2X: �A``�A and not �A``�AcAP1;:::;Pn)), and this B receives probability
PP1;:::;Pn(B) = ~PP1;:::;Pn(C). So by (3) we have PP1;:::;Pn(C) = ~PP1;:::;Pn(C), q.e.d.

Claim 6. For all A 2 X such that �A ``� A and not �A ``� Ac, PP1;:::;Pn(A)
is 1 if some individual i has Pi(A) > 0, and 0 otherwise.

By de�nition of PP1;:::;Pn, every atom of � that has positive probability is
a subset of the event \A2X: �A``�A and not �A``�AcAP1;:::;Pn, and so this event has
probability 1. It follows that, for all A 2 X such that �A ``� A and not
�A ``� Ac, we have PP1;:::;Pn(AP1;:::;Pn) = 1, and hence

PP1;:::;Pn(A) =

�
1 if AP1;:::;Pn = A, i.e. if Pi(A) > 0 for some i
0 if AP1;:::;Pn = A

c, i.e. if Pi(A) = 0 for all i,

q.e.d.

By Claim 5, we have constructed a well-de�ned pooling function (P1; :::; Pn) 7!
PP1;:::;Pn. By (2) and Claims 5 and 6, we know its behaviour on the entire agenda
X: the pooling function is independent with local decision criterion DA given
by

(i) the linear criterion D0 if A 2 X 0,
(ii) the di¤erent linear criterion D00 if A 2 X 00,
(iii) a non-linear criterion D̂ (taking everywhere except on (0; :::; 0) the value

1) if �A ``� A but not �A ``� Ac,
(iv) the non-linear criterion 1� D̂ if not �A ``� A but �A ``� Ac.
These decision criteria also ensure unanimity-preservation. To see that pool-

ing is not neutral, it su¢ ces to show that, of the four di¤erent types of events
(i)-(iv), at least two occur. The latter is so because �A is of type (i) or (iii) and
because by assumption there exists an A 2 X such that not �A ``� A, i.e. such
that A has type (ii) or (iv). �

Proof of Theorem 4. Our counterexample uses a set 
 := f!1; !2; !3; !4g of
(pairwise distinct) states !k, the �-algebra � := fA : A � 
g (the power set of
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), and the agenda X := fA � 
 : jAj = 2g (the set of binary events). As X
is negation-closed and non-empty, it is indeed an agenda.

1. In this part of the proof, we show that X is pathconnected. Consider any
events A;B 2 X. We construct a path from A to B, by distinguishing three
cases.

Case 1 : A = B. Then the path is trivial, since A `� A (take Y = ;).
Case 2 : A and B have exactly one world in common. We may then write

A = f!A; !g and B = f!B; !g with !A; !B; ! pairwise distinct. We have
f!A; !g `� f!g (take Y = ff!; !0gg, where !0 is the element of 
nf!A; !B; !g)
and f!g `� f!B; !g (take Y = ;).
Case 3 : : A and B have no world in common. We may then write A =

f!A; !0Ag and B = f!B; !0Bg with !A; !0A; !B; !0B pairwise distinct. We have
f!A; !0Ag `� f!A; !Bg (take Y = ff!A; !0Bgg) and f!A; !Bg `� f!B; !0Bg (take
Y = ff!B; !0Agg).
2. In this part, we construct a pooling function (P1; :::; Pn) 7! PP1;:::;Pn that

is zero-preserving, neutral, but not linear. As an ingredient to the construction,
consider �rst a linear pooling function L : Pn ! P. We show that L can be
transformed into a non-linear pooling function that is still neutral and zero-
preserving. We use an (arbitrary) �xed transformation T : [0; 1] ! [0; 1] such
that:

(i) T (1� x) = 1� T (x) for all x 2 [0; 1] (hence T (1=2) = 1=2);
(ii) T (0) = 0 (hence by (i) T (1) = 1);

(iii) T is strictly concave on [0; 1=2] (hence by (i) strictly convex on [1=2; 1]).

(Such a T indeed exists; e.g. T (x) = 4(x� 1=2)3 + 1=2 for all x 2 [0; 1].)
We prove that for every probability measure Q 2 P (thought of as the

outcome of applying the linear pooling function L) there exist real numbers
pk = pQk , k = 1; 2; 3; 4 (thought of as the new probabilities of the states !k;
k = 1; 2; 3; 4, after transforming Q) such that:

(a) p1; p2; p3; p4 � 0 and p1 + p2 + p3 + p4 = 1;
(b) for all A 2 X,

X
k:!k2A

pk = T (Q(A)).

This completes the proof, because by (a) a pooling function F : Pn ! P,
(P1; :::; Pn) 7! PP1;:::;Pn can be de�ned by letting

PP1;:::;Pn(A) :=
X
k:!k2A

p
L(P1;:::;Pn)
k for all A 2 �,

which by (b) satis�es

PP1;:::;Pn(A) = T (L(P1; :::; Pn)(A)) for all A 2 X,

implying that F is neutral (as L is neutral), zero-preserving (as L is zero-
preserving and T (0) = 0), and non-linear (as L is linear and T a non-linear
transformation).
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Let Q 2 Pn. For any k 2 f1; 2; 3; 4g, put qk := Q(f!kg); and for any
k; l 2 f1; 2; 3; 4g; k < l; put qkl = Q(f!k; !lg).
In order for numbers p1; :::; p4 to satisfy (b), they must satisfy the system

pk + pl = T (qkl) for all k; l 2 f1; 2; 3; 4g with k < l.

Given p1+ p2+ p3+ p4 = 1, three of these six equalities are redundant. Indeed,
suppose that k; l 2 f1; 2; 3; 4g, k < l, and de�ne k0; l0 2 f1; 2; 3; 4g, k0 < l0, by
fk0; l0g = f1; 2; 3; 4gnfk; lg. By pk+pl = 1�pk0�pl0 and T (qkl) = T (1� qk0l0) =
1� T (qk0l0), the equality pk + pl = T (qkl) is equivalent to pk0 + pl0 = T (qk

0l0). So
(b) reduces (given p1 + p2 + p3 + p4 = 1) to the system

p1 + p2 = T (q12), p1 + p3 = T (q13), p2 + p3 = T (q23).

We now solve this system of three linear equations in (p1; p2; p3) 2 R3. Write
tkl := T (qkl) for all k:l 2 f1; 2; 3; 4g, k < l.0@ 1 1 t12

1 1 t13
1 1 t23

1A !

0@ 1 1 t12
�1 1 t13 � t12

2 t23 + t13 � t12

1A
!

0@ 1 1 t12
1 -1 t12 � t13
1 t23+t13�t12

2

1A .
So we have

p3 =
t23 + t13 � t12

2
,

p2 = t12 � t13 +
t23 + t13 � t12

2
=
t12 + t23 � t13

2
,

p1 = t12 �
t12 + t23 � t13

2
=
t12 + t13 � t23

2
,

p4 = 1� (p1 + p2 + p3) = 1�
t12 + t13 + t23

2
.

We have to show that the numbers p1; :::; p4 so-de�ned satisfy not only (b) and
p1+ :::+p4 = 1 but also the remaining condition in (a), i.e. non-negativity. We
do this by proving two claims.

Claim 1. p4 � 0, i.e. t12+t13+t232
� 1.

We have to prove that T (q12) + T (q13) + T (q23) � 2. Note that

q12 + q13 + q23 = q
1 + q2 + q1 + q3 + q2 + q3 = 2(q1 + q2 + q3) � 2.

We distinguish three cases.

Case 1 : all of q12; q13; q23 are all � 1=2. Then by (i)-(iii) T (q12) + T (q13) +
T (q23) � q12 + q13 + q23 � 2, as desired.
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Case 2 : at least two of q12; q13; q23 are < 1=2. Then, again using (i)-(iii),
T (q12) + T (q13) + T (q23) < 1=2 + 1=2 + 1 = 2, as desired.

Case 3 : exactly one of q12; q13; q23 is < 1=2. Suppose q12 < 1=2 � q13 �
q23 (otherwise just switch the roles of q12; q13; q23). For all � � 0 such that
q13 � �; q23 + � 2 [1=2; 1], the convexity of T on [1=2; 1] implies that

T (q13) � 1

2
[T (q13 � �) + T (q23 + �)]

and T (q23) � 1

2
[T (q13 � �) + T (q23 + �)] ,

so that (by adding these two inequalities)

T (q13) + T (q23) � T (q13 � �) + T (q23 + �).

This inequality may be applied to � = 1� q23, since

q13 � (1� q23) = (q13 + q23 + q12)� q12 � 1 � 2� q12 � 1 = 1� q12 2 [1=2; 1];

which gives us

T (q13) + T (q23) � T (q13 � (1 + q23)) + T (1):

On the right hand side of this inequality, we have T (1) = 1 and, by q13 � (1 +
q23) � 1�q12 and T�s increasingness, T (q13�(1+q23)) � T (1�q12) = 1�T (q12).
So we obtain T (q13)+T (q23) � 1+1�T (q12), i.e. T (q12)+T (q13)+T (q23) � 2,
as desired.

Claim 2. pk � 0 for all k = 1; 2; 3.
We only show that p1 � 0, as the proofs for p2 and p3 are analogous. We

have to prove that t13 + t23 � t12 � 0, i.e. that T (q13) + T (q23) � T (q12), or
equivalently that T (q1 + q3) + T (q2 + q3) � T (q1 + q2). As T is an increasing
function, it su¢ ces to establish T (q1) + T (q2) � T (q1+ q2). Again, we consider
three cases.

Case 1 : q1 + q2 � 1=2. Suppose q1 � q2 (otherwise the roles of q1 and q2

get swapped). For all � � 0 such that q1 � �; q2 + � 2 [0; 1=2], the concavity of
T on [0; 1=2] implies that

T (q1) � 1

2

�
T (q1 � �) + T (q2 + �)

�
and T (q2) � 1

2

�
T (q1 � �) + T (q2 + �)

�
,

so that (by adding these inequalities)

T (q1) + T (q2) � T (q1 � �) + T (q2 + �)

Applying this to � = q1 yields T (q1) + T (q2) � T (0) + T (q2 + q1) = T (q1 + q2),
as desired.
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Case 2 : q1 + q2 > 1=2 but q1; q2 � 1=2. By (i)-(iii),

T (q1) + T (q2) � q1 + q2 � T (q1 + q2),

as desired.

Case 3 : q1 > 1=2 or q2 > 1=2. Suppose q2 > 1=2 (otherwise swap q1

and q2 in the proof). Then q1 < 1=2, as otherwise q1 + q2 > 1. De�ne y :=
1 � q1 � q2. As also y < 1=2, an argument analogous to that in case 1 yields
T (q1) + T (y) � T (q1 + y), i.e. T (q1) + T (1� q1 � q2) � T (1� q2). So, by (i),
T (q1) + 1� T (q1 + q2) � 1� T (q2), i.e. T (q1) + T (q2) � T (q1 + q2). �

One might wonder why the pooling function constructed in the proof of The-
orem 4 violates implication-preservation �which it must do since Theorem 2 tells
us that implication-preserving independent pooling functions must be linear (for
non-simple, hence in particular for pathconnected agendas). Let 
;�; X be as
in the proof, and consider a pro�le with complete unanimity: all individuals i
give !1 probability 0, each of !2; !3 probability 1/4, and hence !4 probability
1/2. As f!1g is the di¤erence of two events in X (e.g. f!1; !2gnf!2; !3g),
implication-preservation would require the collective probability of !1 to be 0
too. But the collective probability of !1 is (in the notation of the proof) given
by

p1 =
t12 + t13 � t23

2
=
T (q12) + T (q13)� T (q23)

2
,

where qkl is the collective probability of f!k; !lg under a linear pooling function,
so that qkl equals the unanimous individual probability of f!k; !lg. So

p1 =
T (1=4) + T (1=4)� T (1=2)

2
= T (1=4)� T (1=2)

2
,

which is strictly positive as T is strictly concave on [0; 1=2] with T (0) = 0.
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