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In "Opinion pooling on general agendas", we characterize linear and neutral
opinion pooling functions F' : P® — P, where unlike in the classical opinion
pooling problem the agenda X of relevant events need not form a o-algebra.
These characterizations are based on two conditions on the pooling function:
independence and implication-preservation. The latter condition is stronger
than the standard (Pareto-like) condition of zero-preservation. In the present
appendix, (i) we show that our characterizations would not in general hold
if instead of implication-preservation we merely require zero-preservation; but
(ii) for an interesting class of agendas, zero-preservation (still together with
independence) suffices to force pooling to be neutral (Theorem 3) while leaving
room for non-linear pooling (Theorem 4). These results suggest that without
invoking the requirement of implication-preservation a normative defense of
linear pooling becomes difficult. The framework and notation is the same as in
the original paper.>

Say that a relevant event A € X conditionally entails another one B €
X (written A F* B) if {A} UY entails B (i.e. NeegayuyC C B) for some
countable set Y C X that is consistent with A (ie. NeegayuyC # 0) and
with B¢ (i.e. NcerpeyuyC # 0). The agenda X is pathconnected if for any
two events A, B € X\{0,Q} there exist events A;,..., Ay € X (k > 1) such
that A = A; H* Ay B ... F* A, = B. In other words, any two contingent
events in the agenda can be connected by a path of conditional entailments.?
For instance, X := {A, A°: A C R is a bounded interval} is a pathconnected
agenda (a subset of the Borel-o-algebra ¥ over 2 = R).* One easily shows that

IThe first version of the main paper still contained this appendix.

2Note however that, as zero-preservation does not anymore refer to the probability of
events outside the agenda X, one might for the purpose of the present appendix re-define a
pooling function as a mapping from P% to Px rather than for P" to P, where Px is the set
of functions P : X — [0, 1] that can be extended to a probability measure on 3.

3Conditional entailment and pathconnecdness are closely related to the notions of condi-
tional entailment and total blockedness introduced in a binary (not probabilistic) setup by
Nehring and Puppe, "Strategy-proof social choice on single-peaked domains: possibility, im-
possibility and the space between", working paper (2002). The strategy to prove Theorem 3
reminds of arguments made in that paper (in particular, our lemma has an analogue in the
binary setup).

4For example, a path of conditional entailments between the intervals [0, 1] and [2, 3] can



pathconnected agendas are non-simple; but many non-simple agendas are not
pathconnected.

We now give a characterization of neutral pooling based on requiring just
zero-preservation, not implication-prerservation.

Theorem 3 (a) For a pathconnected agenda, every independent zero-preserving
pooling function is neutral.

(b) For a non-pathconnected finite agenda, not every independent zero-preserving
pooling function is neutral.

So, for a pathconnected agenda, independence leads to neutrality. Does it
even lead to linearity? The answer is negative, as the next theorem shows.

Theorem 4 For some pathconnected agenda X (in some c-algebra ¥ over some
set of worlds ), not every neutral zero-preserving pooling function is linear.

The following lemma is central for proving part (a) of Theorem 3.

Lemma For any independent and zero-preserving pooling function, A +* B
implies Dy < Dpg for all relevant events A, B € X (where D4 :[0,1]" — [0, 1]
is the local pooling criterion for A, and Dg is that for B).

Proof. Let F, A, B, D4, Dg be as specified, and assume A F* B, say in virtue
of the set Y C X. Let = (1, ...,x,) € [0,1]". We show that D,(z) < Dg(z).
As Neegayuy C has empty intersection with B¢ (by the conditional entailment),
it equals its intersection with B; in particular, Neega,pyuy C # 0. Similarly, as
Ncegpeyuy C has empty intersection with A, it equals its intersection with A¢; in
particular, Neegae, peyuyC # 0. Hence there are worlds w € Neega,pyuyC and

W' € Neegae,peyuyC. For each individual ¢, consider the probability measure
P, : ¥ — [0, 1] defined by

Pi = xi(Sw -+ (1 — xi)éwl,

where 6,0, : ¥ — [0, 1] denote the Dirac-measures in w and «’, respectively.
As each P, satisfies P;(A) = Pi(B) = x;, we have

Pp, . p,(A) = Da(Pi(A),...,P.(A)) = Da(x),
Pp, . p,(B) = Dg(P(B),...,P,(B)) = Dg(z).

Further, for each P, and each C' € Y we have P;(C) = 1, so that Pp, _p,(C) =1
(by zero-preservation), and hence Pp, _p,(NceyC) = 1 since the intersection of

be constructed as follows: [0,1] F* [0, 3] (one may conditionalise on the empty set of events
Y = 0, i.e. the entailment is unconditional), and [0,3] F* [2,3] (one may conditionalise on
Y ={[2,4]}.



countably many events of probability one has again probability one. So

..... p.(NeefayuyC) = Pp..p,(A) = Da(x),
..... p.(NeegyuyC) = Pp,..p,(B) = Dp().

..... P, (NcerayuyC) < Pp, p,(Necerpiuy C) since

Pp,
Pp,

mCG{A}UYC = ﬁCe{A,B}UY - ﬂCe{B}UYC

(for the equality, see an earlier argument). So D4(z) < Dg(x), as desired. B

Proof of Theorem 3. (a) Let X be pathconnected and F' independent and
zero-preserving. If X = {0,Q}, F is obviously neutral, as desired. Now let
X # {0,9} and write D4 for the local pooling criterion of any contingent
event A € X\{0),Q}. As X is pathconnected, repeated application of the above
lemma yields Dy < Dp for all A,B € X\{0,Q}, and hence D4, = Dpg for
all A,B € X\{0,Q}. Define D as the common pooling criterion D4 of all
A e X\{0,Q}. We complete the neutrality proof by showing that D also works
as a pooling criterion for () and Q. Consider any P, ..., P, € P. By definition
of probability measures,

P(@) = ..=P,(0) = Pp
Pi(Q) = ..=Py(Q) = Pp,

So it suffices to show that D(0,...,0) = 0 and D(1,...,1) = 1, which follows

from zero-preservation.

(b) Now let X be finite and not pathconnected. By an argument in the main
paper, we may assume that the o-algebra generated by X is the entire o-algebra
Y. Notationally, for any sub-o-algebra ¥ C ¥, let A(X) be its set of atoms (i.e.
with respect to set-inclusion minimal non-empty elements). We now define a
pooling function and show that it has the desired properties. As an ingredient
to the definition, let D" : [0,1]" — [0,1] and D" : [0,1]" — [0, 1] be the local
decision rules of two distinct linear pooling functions; and let A € X\ {0, Q} be
a (by assumption existing) event such that not for all A € X\{0,Q} there is
A F-* A, where "H-*" stands for the existence of a finite path of conditional
entailments as in the definition of pathconnectedness. Consider any profile
(Py,...,P,) € P". To define a probability measure Pp, _p, : ¥ — [0,1], we
start by defining probability measures on two sub-o-algebras of X, denoted X’
and X" and defined as the o-algebras generated by the sets

X" ={Ae X : AF-* B for both B € {A, A°}},
X" ¢ ={AeX: Ar* Bforno B € {4, A°}},
: X" — [0, 1] be defined by

Pp 5 (A) = D(Pi(A), ..., P,(A)) forall A€,
Py (A) = D'(Py(A),..., Py(A)) forall A€y,

7777
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The functions are indeed probability measures (on X' resp. X), as they are
linear averages of of probability measures.

Claim 3. The o-algebras ¥’ and " are logically independent, that is: if
A’ €Y and A” € ¥ are non-empty, so is A’ N A”.

Suppose the contrary. Then, as each non-empty element of >’ is a superset
of an atom of ¥’ and hence of a non-empty intersection of events in X', and
similarly for ", there are consistent sets Y’ C X’ and Y” C X” such that
Y UY” is inconsistent. Let Y be a minimal inconsistent subset of Y/ UY”. Y
is not a subset of any of Y’ and Y”, because the latter sets are consistent. So
there are A € YN X" and B € Y N X”. Note that A F* B¢, a contradiction
since A € X’ and B € X", q.e.d.

We now extend the measures Pp, p, to a probability measure

..........

on the o-algebra 3 generated by ' UX”, i.e. generated by X' U X", in such a
way that the events in ¥’ are probabilistically independent of those in ¥". By
Claim 3, the atoms of ¥ are precisely the intersections of an atom of ¥’ and one

.....

Ppy,..p, (A 0NA") = P, p (A)PR_p, (A") (1)

..........

for all A" € A(Y') and all A” € A(X"”). This measure is indeed a probability
measure, because

Z PPI ----- Pn (A) = Z Pél,‘..,Pn (A,)Pgl,...,Pn (A”)

AE,A(E) AleA(E/)7A//eA(E//)
= Z PJIDI ..... Pn(AI> Z P1/3/1 ..... Pn(A”)
Al A(SY) Ae A(T)
1
= 1.
As one easily checks, restricting Pp, _ p, to X' resp. ¥ gives Pp, . p, Tesp
Pp, . p,,and so
~ [ D'(P(A),..,P,(A)) forall Ae¥
Pp,..p.(A) = { D"(Py(A), ..., P,(A)) forall Ae Yy (2)

-----

claim. For all A € X such that A F-* A but not A F-* A°¢, define

| A if P(A) > 0 for some i
| A° if P(A) =0 for all 4.

Claim 4. For all atoms C of ¥ (= ¢(X' U X)) with Pp,__p,(C) > 0, the
event C'N (mAGX:AFF*A and not AFF*ACAP1 ..... Pn) is an atom of X.



,,,,,

-----------

A" e A(Y), we may write A = Naecy'A for some set Y’ C X' containing
exactly one member of each pair A, A° € X’. Similarly, A” = Nyey~ A for some
set Y C X" containing exactly one member of each pair A, A° € X”. Note also

..........

set

YP1 ..... P, = {APl ..... P, A€ X, AHH* A’ not A H-* Ac}
consists of exactly one member of each pair A, A° € X\(X' U X”). Thus

----------------

is either an atom or is empty. Hence it suffices to show that Cp, _p, # (0. Sup-
pose the contrary. Then Y'UY"UYp,
inconsistent subset Y. We distinguish two cases and derive a contradiction in
each.

Case 1: there is a B € Y NYp,  p, with A F-* B. Consider any B’ €
Y\{B}. We have (i) not A FH-* B’: otherwise, by B’ F* B® we would have
A F=* B¢ hence B € X', in contradiction to B € Yp, . p,. Further, as A F+*
B and B F* (B')¢, we have (ii) A F-* (B’)°. By (i) and (ii), and letting
p, (€ {A, AY}) is well-defined. As Yp,

..........

77777

Ap,..p, = A° So all i have P;(A) = 0, i.e. all ¢ have P,(B’) = 1. Since this
holds for all B" € Y\{B}, all ¢ have P,(NpeyB’) = Pi(B). Hence, as Y is
inconsistent, all ¢ have P,(B) = 0. Hence, Bp, . p, = B®. So B° € Yp, _p,, in
contradiction to B € Yp, . p,-

.....

.....

take the form Ap,
Fi(B) = 1. So, (*) all i have Fj(Npey B) = Pi(Npey\vp, . _p, B). Now, we have
either ) Y CYp,  p, UY' or (ii) Y C Yp  p, UY", because otherwise there
exist an A’ € Y’ and an A” € Y”, and we have A’ F* (A”)¢, hence A F-* (A")¢,
a contradiction by (A”)¢ € X”. First suppose (i). Then Y\Yp,  p, C Y’ and
so (*) implies that (**) all ¢ have P;(NpeyB) > P(Npey'B) = Pi(A’). As by
assumption ppl 77777 p,(A") > 0, there exists by (2) at least one i with P;(A") > 0,
hence by (**) with Pi(NpeyB) > 0. So NpeyB # 0, i.e. Y is consistent,
a contradiction. Similarly, under (ii) one can show that Y is consistent, a
contradiction, q.e.d.

,,,,,

.....
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Any other atom has measure defined as zero.

..........

..........

Pp,...p,(C) = Z Pp,...p,(B). (3)

BeA(X):BCC

p,(C) = 0. Then for all B € A(X) with B C C we have
p,), and so by (3) we have Pp,_p, (C) =

.....
-----

-----

-----

-----
.....

.....

.....

Claim 6. For all A € X such that A H=* A and not A F-* A°, Pp, _ p (A)
is 1 if some individual 7 has P;(A) > 0, and 0 otherwise.

By definition of Pp, _p,, every atom of ¥ that has positive probability is
a subset of the event Mycx.4-++4 and not A--+acAp,,.. p,, and so this event has

probability 1. It follows that, for all A € X such that A FF* A and not
A" A, we have Pp, _p,(Ap,..p,) =1, and hence

Pp,...p(A) = th2p,, P, = A, ie if P(A) > 0 for some i
L yeeesPr 0 if Ap, . p, = A ie. if P,(A) =0 for all i,

.....

q.e.d.

By Claim 5, we have constructed a well-defined pooling function (P, ..., P,) —

77777 p,- By (2) and Claims 5 and 6, we know its behaviour on the entire agenda

X: the pooling function is independent with local decision criterion D4 given

by

(i) the linear criterion D' if A € X',

(ii) the different linear criterion D” if A € X",

(iii) a non-linear criterion D (taking everywhere except on (0, ...,0) the value
1) if AF-* A but not A H-* A°,

(iv) the non-linear criterion 1 — D if not A F—* A but A H-* A°.

These decision criteria also ensure unanimity-preservation. To see that pool-
ing is not neutral, it suffices to show that, of the four different types of events
(i)-(iv), at least two occur. The latter is so because A is of type (i) or (iii) and
because by assumption there exists an A € X such that not A F-* A, i.e. such
that A has type (ii) or (iv). W

Proof of Theorem 4. Our counterexample uses a set € := {w;,ws, w3, ws} of
(pairwise distinct) states wy, the o-algebra 3 := {A: A C Q} (the power set of
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), and the agenda X := {A C Q : |A| = 2} (the set of binary events). As X
is negation-closed and non-empty, it is indeed an agenda.

1. In this part of the proof, we show that X is pathconnected. Consider any
events A, B € X. We construct a path from A to B, by distinguishing three
cases.

Case 1: A = B. Then the path is trivial, since A F* A (take Y = ().

Case 2: A and B have exactly one world in common. We may then write
A = {wa,w} and B = {wp,w} with wy,wp,w pairwise distinct. We have
{wa,w} F* {w} (take Y = {{w,w'}}, where &’ is the element of Q\{w4,wp,w})
and {w} H* {wp,w} (take Y = 0).

Case 3: : A and B have no world in common. We may then write A =
{wa,wy} and B = {wp, Wy} with wa, Wy, wp,wy pairwise distinct. We have
{wa, Wy} F* {wa,wp} (take Y = {{wa,wi}}) and {wa,wp} F* {wp,wi} (take
Y = {{ws,wi }).

2. In this part, we construct a pooling function (P, ..., P,) — Pp, _ p,
is zero-preserving, neutral, but not linear. As an ingredient to the construction,
consider first a linear pooling function L : P* — P. We show that L can be
transformed into a non-linear pooling function that is still neutral and zero-
preserving. We use an (arbitrary) fixed transformation 7" : [0,1] — [0, 1] such
that:

(i) T(1—x)=1—"T(x) for all z € [0,1] (hence T'(1/2) = 1/2);

(ii) 7(0) = 0 (hence by (i) T'(1) = 1);

(iii) T is strictly concave on [0, 1/2] (hence by (i) strictly convex on [1/2,1]).

(Such a T indeed exists; e.g. T(x) = 4(x —1/2)3 +1/2 for all z € [0,1].)

We prove that for every probability measure Q € P (thought of as the
outcome of applying the linear pooling function L) there exist real numbers

PE = pg, k = 1,2,3,4 (thought of as the new probabilities of the states wy,
k=1,2,3,4, after transforming ) such that:

(a) p1,p2,p3,ps > 0 and py + po + p3 +ps = 1;

(b) for all A € X, Zm _,Pe=T(Q(A)).

This completes the proof, because by (a) a pooling function F' : P" — P,
(P, ..., P,) — Pp, . p, can be defined by letting

.....

p(A):= Z pf(Pl """ ) forall A€ ¥,

kwip€A

-----

Pp, . p,(A) =T(L(P,...,P,)(A)) forall A e X,

implying that F' is neutral (as L is neutral), zero-preserving (as L is zero-
preserving and 7'(0) = 0), and non-linear (as L is linear and T a non-linear
transformation).



Let Q € P". For any k € {1,2,3,4}, put ¢* := Q({w}); and for any
k,le{1,2,3,4}, k <, put g = Q({wk,wi}).
In order for numbers py, ..., ps to satisfy (b), they must satisfy the system

pr+ = T(qw) for all k,1 € {1,2,3,4} with k < [.

Given p; + po + p3 + ps = 1, three of these six equalities are redundant. Indeed,
suppose that k.1 € {1,2,3,4}, k < [, and define £',I' € {1,2,3,4}, ¥’ < I', by
{K', '} =41,2,3,4}\{k,l}. Bypr+p=1—pw—pr and T(qx) = T(1 —qir) =
1 —T(qwr), the equality pp 4+ pr = T'(qu) is equivalent to py +py = T(¢*"). So
(b) reduces (given p; + pa + p3 + ps = 1) to the system

p1+p2 =T (q12), p1 + ps = T(q13), P2 + p3 = T(qa3).

We now solve this system of three linear equations in (pi1, p2, p3) € R3. Write
T = T(qkl) for all k.l € {1,2,3,4}, k<.

1 1 tlg 1 1 t12
1 1 t13 — —1 1 t13 — t12
1 1 t23 2 t23 + t13 - t12
11 to
— 1 -1 tio—ti3

1 tozt+tiz—tia
2

So we have

to3 + t13 — t12
p3 = ————

2
tog + 113 —t12  ti12 +taz — 113
p2 = tig—tiz+ = )

2 2
b = t1g + to3 — t13 _ t1g + 13 — t23
1 12 5 5 ;
t1o+ti1s+ 1t
Py = 1—(p1+p2+p3)=1—¥~

We have to show that the numbers p, ..., py so-defined satisfy not only (b) and
p1+ ... +ps = 1 but also the remaining condition in (a), i.e. non-negativity. We
do this by proving two claims.

Claim 1. py > 0, i.e. % <1

We have to prove that T'(q12) + T'(¢13) + T'(q23) < 2. Note that
et @zt as=0+¢+q' +@+ ¢+ =20" + P+ ¢’ < 2.

We distinguish three cases.

Case 1: all of q12, q13, q23 are all > 1/2. Then by (i)-(iii) T'(¢12) + T(q13) +
T(q23) < q12 + Q13 + qo3 < 2, as desired.



Case 2: at least two of 12, q13,¢e3 are < 1/2. Then, again using (i)-(iii),
T(q12) + T(q13) + T(qa3) < 1/2+1/2 + 1 = 2, as desired.

Case 3: exactly one of g2, q13,q23 is < 1/2. Suppose ¢ < 1/2 < q13 <
@23 (otherwise just switch the roles of qi2,q13,¢03). For all § > 0 such that
q13 — 0,qa3 + 0 € [1/2,1], the convexity of T on [1/2, 1] implies that

T(q3) < % [T(q13 — 0) + T(gaz + 0)]
and T(qo3) < % [T(q13 — 0) + T(qo3 +0)] ,

so that (by adding these two inequalities)
T(qi3) + T(g2s) < T(qu3 — 0) + T(qa3 +9).
This inequality may be applied to § = 1 — ¢q3, since

Gs— (1 —qo3) = (s + Qs +q12) — 12— 1 <2 —qu—1=1—¢qn € [1/2,1];

which gives us

T(qi3) +T(qe3) < T(quz3 — (1 +qo3)) + T(1).

On the right hand side of this inequality, we have T'(1) = 1 and, by ¢35 — (1 +
¢23) < 1—q12 and T7s increasingness, T'(q13— (14+¢o3)) < T(1—q12) = 1 =T (q12).
So we obtain T(q13) + T'(q23) < 14+1—T(q12), i.e. T(q12) +T(q13) + T(q23) < 2,
as desired.

Claim 2. p,, > 0 for all k =1, 2, 3.

We only show that p; > 0, as the proofs for p, and ps are analogous. We
have to prove that ti3 + o3 — t15 > 0, i.e. that T(q13) + T(qa3) > T'(q12), or
equivalently that T'(¢* + ¢®) + T(¢*> + ¢®) > T(q' + ¢*). As T is an increasing
function, it suffices to establish T'(¢') + T'(¢*) > T(¢* + ¢*). Again, we consider
three cases.

Case 1: ¢* + ¢*> < 1/2. Suppose ¢! < ¢* (otherwise the roles of ¢* and ¢
get swapped). For all § > 0 such that ¢* — d,¢* + § € [0,1/2], the concavity of
T on [0,1/2] implies that

T(q") > [T(q1 — 6 +T(*+ 5)}

and T(¢*) > 5 [T(q" =) +T(¢* +9)],

| =D =

so that (by adding these inequalities)
T(¢") +T(q*) > T(q" —6) + T(q* +9)

Applying this to § = ¢' yields T'(¢*) +T(¢*) > T(0) + T(¢* + ¢*) = T(¢* + ¢?),
as desired.



Case 2: ¢' 4+ ¢®> > 1/2 but ¢*, ¢*> < 1/2. By (i)-(iii),
T(¢") +T(¢*) > ¢ + ¢ >T(q" + ¢,

as desired.

Case 3: ¢* > 1/2 or ¢* > 1/2. Suppose ¢*> > 1/2 (otherwise swap ¢
and ¢* in the proof). Then ¢* < 1/2, as otherwise ¢' + ¢> > 1. Define y :=
1—¢q'— ¢ Asalsoy < 1/2, an argument analogous to that in case 1 yields
T(¢")+T(y) =2 T(q" +y), ie T(¢")+T(1—¢" —¢*) = T(1 - ¢*). So, by (i),
T(¢)+1-T(¢" +¢*) 21 =T(¢%), ie. T(¢") + T(¢*) 2 T(q" + ¢*). W

One might wonder why the pooling function constructed in the proof of The-
orem 4 violates implication-preservation — which it must do since Theorem 2 tells
us that implication-preserving independent pooling functions must be linear (for
non-simple, hence in particular for pathconnected agendas). Let 2, ¥, X be as
in the proof, and consider a profile with complete unanimity: all individuals ¢
give wy probability 0, each of ws, w3 probability 1/4, and hence w, probability
1/2. As {w;} is the difference of two events in X (e.g. {wi,wa2}\{ws,ws}),
implication-preservation would require the collective probability of w; to be 0
too. But the collective probability of wy is (in the notation of the proof) given
by

tiattiz—tas  T(qu2) + T(qu3) — T(q3)

B 2 B 2 ’

where ¢y, is the collective probability of {wy,w; } under a linear pooling function,
so that g equals the unanimous individual probability of {wy,w;}. So

b1

o= TUA LT =Ty, TS

which is strictly positive as T is strictly concave on [0,1/2] with 7°(0) = 0.

10



