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Abstract

What is the relationship between degrees of belief and binary beliefs? Can the

latter be expressed as a function of the former – a so-called “belief-binarization

rule” – without running into di�culties such as the lottery paradox? We show that

this problem can be usefully analyzed from the perspective of judgment-aggregation

theory. Although some formal similarities between belief binarization and judgment

aggregation have been noted before, the connection between the two problems has

not yet been studied in full generality. We seek to fill this gap. This paper is orga-

nized around a baseline impossibility theorem, which we use to map out the space of

possible solutions to the belief-binarization problem. Our theorem shows that, ex-

cept in limiting cases, there exists no belief-binarization rule satisfying four initially

plausible desiderata. Surprisingly, this result is a direct corollary of the judgment-

aggregation variant of Arrow’s classic impossibility theorem in social choice theory.

1 Introduction

We routinely make belief ascriptions of two kinds. We speak of an agent’s degrees of

belief in some propositions and also of the agent’s beliefs simpliciter. On the standard
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picture, degrees of belief (or credences) take the form of subjective probabilities the agent

assigns to the propositions in question, for example a subjective probability of 1
2 for the

proposition that a coin, which has been tossed but not observed, has landed “heads”.

Beliefs (also known as full beliefs, all-out beliefs, or binary beliefs) take the form of the

agent’s overall acceptance of some propositions and non-acceptance of others, such as

when one accepts that the Earth is round or that 2+2=4, but not that there are trees

on Mars. The agent’s belief set consists of all the propositions that he or she accepts in

this all-or-nothing sense. What is the relationship between degrees of belief and binary

beliefs? Can the latter be expressed as a function of the former and, if so, what does

this function look like, in formal terms? Call this the belief-binarization problem.1

A widely studied class of belief-binarization rules is the class of threshold rules,

according to which an agent believes a proposition (in the binary sense) if and only

if he or she has a high-enough degree of belief in it. Threshold rules, however, run into

the well-known lottery paradox (Kyburg 1961). Suppose, for example, that an agent

believes of each lottery ticket among a million tickets that this ticket will not win, since

his or her degree of belief in this proposition is 0.999999, which, for the sake of argument,

counts as “high enough”. The believed propositions then imply that no ticket will win.

But the agent knows that this is false and has a degree of belief of 1 in its negation: some

ticket will win. This illustrates that, under a threshold rule, the agent’s belief set may be

neither implication-closed (some implications of believed propositions are not believed)

nor logically consistent (some beliefs contradict others). The belief-binarization problem

has recently received renewed attention (e.g., by Leitgeb 2014, Lin and Kelly 2012a,b,

Hawthorne and Bovens 1999, and Douven and Williamson 2006).2

In this paper, we reassess this problem from a di↵erent perspective: that of judgment-

aggregation theory. This is the branch of social choice theory that investigates how we

can aggregate several individuals’ judgments on logically connected propositions into

1The term “belief binarization” captures the idea that we are looking for a function that takes non-

binary beliefs (i.e., degrees of belief) as input and delivers binary beliefs as output; it thereby “binarizes”

its non-binary inputs. However, readers who do not like the term “belief binarization” may alternatively

speak of “belief identification”. We thank an anonymous reviewer for raising this point.
2Leitgeb (2014) argues that rational belief corresponds to the assignment of a stably high rational

degree of belief, where this is a joint constraint on degrees of belief and beliefs, not a reduction of one to

the other. Lin and Kelly (2012a, b) use geometric and logical ideas to defend a class of belief-acceptance

rules that avoid the lottery paradox, and explore whether reasoning with beliefs can track reasoning

with degrees of belief. Hawthorne and Bovens (1999) discuss how to make threshold rules consistent.

Douven and Williamson (2006) prove that belief-binarization rules based on a “structural” criterion for

the acceptance of any proposition must require a threshold of 1 for belief or fail to ensure consistency.
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collective judgments.3 Amulti-member court, for example, may have to aggregate several

judges’ verdicts on whether a defendant did some action (proposition p), whether that

action was contractually prohibited (proposition q), and whether the defendant is liable

for breach of contract (for which the conjunction p^q is necessary and su�cient). Finding

plausible aggregation methods that secure consistent collective judgments is surprisingly

di�cult. In our example, there might be a majority for p, a majority for q, and yet a

majority against p^ q, which illustrates that majority rule may fail to secure consistent

and implication-closed collective judgments. This is reminiscent of a threshold rule’s

failure to secure consistent and implication-closed beliefs in belief binarization.

We will show that this reminiscence is not accidental: several key results in judgment-

aggregation theory have immediate consequences for belief binarization, which follow

once the formal apparatus of judgment-aggregation theory is suitably adapted. Although

some similarities between the lottery paradox and the paradoxes of judgment aggregation

have been discussed before (especially by Levi 2004, Douven and Romeijn 2007, and Kelly

and Lin 2011), the focus has been on identifying lessons for judgment aggregation that

can be learnt from the lottery paradox, not the other way round. A notable exception

is Chandler (2013).4 So far, there has been no comprehensive study of the lessons

that we can learn for belief binarization from the large terrain of aggregation-theoretic

impossibility and possibility results. We seek to fill this gap.5

We present a “baseline” impossibility theorem, which we use to map out the space

of possible solutions to the belief-binarization problem. The theorem says that except

in limiting cases, which we characterize precisely, there exists no belief-binarization rule

satisfying four formal desiderata:

(i) universal domain: the rule should always work;

(ii) consistency and completeness of beliefs: beliefs should be logically consistent and

complete, as explained in more detail later;

3See, e.g., List and Pettit (2002, 2004), Pauly and van Hees (2006), Dietrich (2006, 2007), Dietrich and

List (2007a, b, 2013), Nehring and Puppe (2010), Dokow and Holzman (2010a, b), and for a survey List

(2012). This work was inspired by legal scholarship on the “doctrinal paradox” (Kornhauser and Sager

1986). Social choice theory in the tradition of Condorcet and Arrow focuses on preference aggregation.
4Chandler’s paper, which came to our attention as we were revising this paper, derives lessons for

belief binarization from “distance-based” judgment aggregation; we return to this in Section 8.2.
5Douven and Romeijn (2007, p. 318) conclude their paper with an invitation to conduct the kind of

study we embark on here: “given the liveliness of the debate on judgement aggregation, and the many

new results that keep coming out of that, it is not unrealistic to expect that at least some theorems

originally derived, or still to be derived, within that context can be applied fruitfully to the context of

the lottery paradox, and will teach us something new, and hopefully also important, about this paradox.”
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(iii) propositionwise independence: whether or not one believes each proposition should

depend only on the degree of belief in it, not on the degree of belief in others; and

(iv) certainty preservation: if the degrees of belief happen to take only the values 0 or

1 on all propositions, they should be preserved as the all-or-nothing beliefs.

The upshot is that any belief-binarization rule will satisfy at most three of the four

desiderata, and we assess the available possibilities below. For example, if we replace

the completeness requirement in desideratum (ii) with the requirement that beliefs be

closed under logical implication (but not necessarily complete), then the only possible

belief-binarization rule is the one that demands a degree of belief of 1 (“certainty”) for

belief simpliciter. This is no longer an impossibility, but still a triviality result.

Surprisingly, ourmain impossibility theorem is a corollary of the judgment-aggregation

variant of Arrow’s classic impossibility theorem in social choice theory.6 Originally proved

for preference aggregation, Arrow’s theorem (1951/1963) shows that there are no non-

dictatorial methods of aggregation that satisfy some plausible desiderata. Informally,

there is no perfect democratic voting method. One of this paper’s lessons is that the

Arrovian impossibility carries over to belief binarization and, therefore, that the lottery

paradox and the paradoxes of social choice can be traced back to a common source.

What can we learn from this? Just as Arrow’s theorem establishes an inconsistency

between some plausible requirements of social choice, so our analysis establishes the

inconsistency between some desiderata on belief binarization that are, arguably, nat-

ural starting points for any investigation of the problem. The tools we import from

judgment-aggregation theory allow us to pinpoint the precise (necessary and su�cient)

conditions under which this inconsistency arises. Interestingly, it arises not only when

the domain of beliefs is an entire algebra of propositions (a standard assumption in for-

mal epistemology), but also for sets of propositions that are much less rich (in a sense

made precise in the Appendix). In sum, the conflict between the four desiderata is not

just an isolated artifact of a few lottery-paradox examples, but a very general problem.

Furthermore, just as Arrow’s theorem can be used to map out the space of possible

aggregation methods in social choice theory, so our result yields a very general and novel

taxonomy of the space of possible solutions to the belief-binarization problem. As we will

see, some of those solutions are more compelling than others, and we suggest that the

most palatable (or least unpalatable) solutions involve relaxing propositionwise indepen-

dence or (if we wish to keep independence) weakening the closure requirements on beliefs.

6This variant, discussed in more detail below, was proved by Dietrich and List (2007a) and Dokow

and Holzman (2010a), building on results in Nehring and Puppe (2010).
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More broadly, our investigation is relevant to some metaphysical, psychological, and

epistemological questions. We may be interested, for instance, in whether an agent

plausibly has both degrees of belief and binary beliefs, and/or whether one of the two

kinds of belief – say, the binary one – is just a more coarse-grained version of the

other and perhaps reducible to it. Furthermore, even if neither kind of belief can be

reduced to the other, we may still be interested in whether there is some other systematic

connection between the two – such as one of supervenience – or whether they are, in

principle, independent of one another. Finally, we may be interested in how rational

beliefs relate to rational degrees of belief, even if, in the absence of rationality, the two

could come apart. Our formal analysis of the belief-binarization problem is relevant to

all of these questions. It can tell us what conditions the relationship between degrees of

belief and binary beliefs could, or could not, satisfy, thereby constraining the substantive

philosophical views one can consistently hold on this matter.

2 The parallels between belief binarization and judgment

aggregation

To give a first flavour of the parallels between belief binarization and judgment aggrega-

tion, we begin with a simple example of a judgment-aggregation problem, which echoes

our earlier example of the multi-member court. Suppose a committee of three experts

has to make collective judgments on the propositions p, q, r, p^q^r, and their negations

on the basis of the committee members’ individual judgments. These are as shown in

Table 1. The di�culty lies in the fact that there are majorities – in fact, two-thirds

Table 1: A judgment-aggregation problem

p q r p ^ q ^ r ¬(p ^ q ^ r)

Individual 1 True True False False True

Individual 2 True False True False True

Individual 3 False True True False True

Proportion of support 2
3

2
3

2
3 0 1

majorities – in support of each of p, q, and r, but the conjunction of these propositions,

p ^ q ^ r, is unanimously rejected and its negation, ¬(p ^ q ^ r), unanimously accepted.

Majority voting, or any supermajority rule under which a quota of 2
3 is su�cient for

the collective acceptance of any proposition, yields a set of accepted propositions that

is neither implication-closed (it fails to include p ^ q ^ r despite the inclusion of p, q,
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and r) nor consistent (it includes all of p, q, r, and ¬(p ^ q ^ r)). Pettit (2001) has

called such problems discursive dilemmas, though they are perhaps best described sim-

ply as majority inconsistencies. A central goal of the theory of judgment aggregation

is to find aggregation rules that generate consistent and/or implication-closed collective

judgments while also satisfying some other desiderata (List and Pettit 2002).

A belief-binarization problem can take a similar form. Suppose an agent seeks to

arrive at binary beliefs on the propositions p, q, r, p^q^r, and their negations, based on

his or her degrees of belief. Suppose, specifically, the agent assigns an equal subjective

probability of 1
3 to each of three distinct possible worlds, in which p, q, and r have

di↵erent truth-values, as shown in Table 2. Each world renders two of p, q, and r true

and the other false. The bottom row of the table shows the agent’s overall degrees of

belief in the propositions. Here the di�culty lies in the fact that while the agent has a

Table 2: A belief-binarization problem

p q r p ^ q ^ r ¬(p ^ q ^ r)

World 1 (subj. prob. 1
3) True True False False True

World 2 (subj. prob. 1
3) True False True False True

World 3 (subj. prob. 1
3) False True True False True

Degree of belief 2
3

2
3

2
3 0 1

relatively high degree of belief – namely 2
3 – in each of p, q, and r, his or her degree of

belief in their conjunction is 0, and the degree of belief in its negation is 1. Any threshold

rule under which a degree of belief of 2
3 su�ces for all-out belief in any proposition (and, a

fortiori, a rule with a “more-likely-than-not” threshold) yields a belief set that is neither

implication-closed nor consistent. On the other hand, if we demand a higher threshold

for including a proposition in the agent’s belief set, that belief set will include only

¬(p^ q ^ r) and will therefore be incomplete with respect to many proposition-negation

pairs – accepting neither p, nor ¬p, for instance. Other examples can be constructed in

which more demanding threshold rules also lead to inconsistencies.

If we identify voters in Table 1 with possible worlds in Table 2, the parallels be-

tween our two problems should be evident. In this simple analogy, possible worlds in a

belief-binarization problem play the role of individual voters in a judgment-aggregation

problem, and the agent’s degree of belief in any proposition plays the role of the propor-

tion of individuals accepting it. In fact, the function that assigns to each proposition in

a judgment-aggregation problem the proportion of individuals supporting it behaves for-

mally like a probability function over these propositions. Though it is interpretationally
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di↵erent, it satisfies the constraints of probabilistic coherence (assuming individual judg-

ment sets are consistent and complete). This already suggests that belief-binarization

and judgment-aggregation problems are structurally similar (for earlier discussions of

this similarity, see Levi 2004, Douven and Romeijn 2007, Chandler 2013).

Yet, there is an important di↵erence in format. In a judgment-aggregation prob-

lem, we are usually given the entire profile of individual judgments, i.e., the full list

of the individuals’ judgment sets, as in the first three rows of Table 1. In a belief-

binarization-problem, by contrast, we are only given an agent’s degrees of belief in the

relevant propositions, i.e., the last row of Table 2, summarizing his or her overall sub-

jective probabilities. The possible worlds underpinning these probabilities are hidden

from view. Thus the input to a belief-binarization problem corresponds, not to a full

profile of individual judgment sets, but to a propositionwise anonymous profile, i.e., a

specification of the proportions of individuals supporting the various propositions under

consideration. This gives us, not a full table such as Table 1, but only its last row.7

Indeed, in our subsequent formal analysis, possible worlds drop out of the picture.

In sum, a belief-binarization problem corresponds to a propositionwise anonymous

judgment-aggregation problem, the problem of how to aggregate the final row of a table

such as Table 1 into a single judgment set. We can view this as an aggregation problem

with a special restriction: namely that when we determine the collective judgments, we

must pay attention only to the proportions of individuals supporting each proposition

and must disregard, for example, who holds which judgment set. A belief-binarization

problem will then have a solution of a certain kind if and only if the corresponding

propositionwise anonymous judgment-aggregation problem has a matching solution.

Of course, the theory of judgment aggregation has primarily focused, not on the

aggregation of propositionwise anonymous profiles (final rows of the relevant tables), but

on the aggregation of fully specified profiles (lists of judgment sets across all individuals,

without the special restriction we have mentioned). We will see, however, that despite the

more restrictive informational basis of belief binarization several results from judgment-

7The notion of a propositionwise anonymous profile should not be confused with that of an anonymous

profile simpliciter. The former specifies the proportion of individuals supporting each proposition; the

latter specifies the proportion of individuals supporting each combination of judgments. The example

of Table 1 yields an anonymous profile in which the judgment sets {p,q,¬r,¬(p ^ q ^ r)}, {p,¬q,r,¬(p ^
q ^ r)}, and {¬p,q,r,¬(p ^ q ^ r)} are each supported by 1

3 of the individuals, which corresponds to a

propositionwise anonymous profile in which p, q, and r are each supported by 2
3 of the individuals, p^q^r

is supported by none of them, and ¬(p ^ q ^ r) is supported by all. Propositionwise anonymous profiles

correspond to equivalence classes of anonymous profiles, which correspond to equivalence classes of full

profiles. Degree-of-belief functions are structurally equivalent to propositionwise anonymous profiles.
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aggregation theory carry over.8 We will now make this precise.

3 Belief binarization formalized

We begin with a formalization of the belief-binarization problem. Let X be the set of

propositions on which beliefs are held, where propositions are subsets of some underlying

set of worlds.9 We call X the proposition set. For the moment, our only assumption

about the proposition set is that it is non-empty and closed under negation (i.e., for any

proposition p in X, its negation ¬p is also in X). In principle, the proposition set can be

an entire algebra of propositions, i.e., a set of propositions that is closed under negation

and conjunction and thereby also under disjunction.

A degree-of-belief function is a function Cr that assigns to each proposition p in X

a number Cr(p) in the interval from 0 to 1, where this assignment is probabilistically

coherent.10 A belief set is a subset B ✓ X. It is called consistent if B is a consistent

set, complete (relative to X) if it contains a member of each proposition-negation pair

p,¬p in X, and implication-closed (relative to X) if it contains every proposition p in X

that is entailed by B. Consistency and completeness jointly imply implication-closure.

A belief-binarization rule for X is a function f that maps each degree-of-belief

function Cr on X (within some domain of admissible such functions) to a belief set

B = f(Cr). An important class of binarization rules is the class of threshold rules. Here

there exists some threshold t in [0, 1], which can be either strict or weak, such that, for

every admissible degree-of-belief function Cr, the belief set B is the following:

B = {p 2 X : Cr(p) exceeds t},

where “Cr(p) exceeds t” means

8Douven and Romeijn (2007) and Kelly and Lin (2011) proceed the other way round and derive some

impossibility results for anonymous judgment aggregation from analogous results on belief binarization.

These results di↵er from the canonical “Arrovian” impossibility result on judgment aggregation, on which

we focus here (Dietrich and List 2007a, Dokow and Holzman 2010a, Nehring and Puppe 2010). The latter

cannot be derived from any belief-binarization results, given the richer informational basis of judgment

aggregation. (Belief binarization corresponds to propositionwise anonymous judgment aggregation.)
9The following definitions apply. Let ⌦ be some non-empty set of possible worlds. A proposition is a

subset p ✓ ⌦. For any proposition p, we write ¬p to denote the complement (negation) of p, i.e., ⌦\p.
For any two propositions p and q, we write p^q to denote their intersection (conjunction), i.e., p\q; and

p_q to denote their union (disjunction), i.e., p[q. A set S of propositions is consistent if its intersection

is non-empty, i.e., \
p2S

p 6= Ø; S entails another proposition q if the intersection of all propositions in S

is a subset of q, i.e., \
p2S

p ✓ q. A proposition p is tautological if p = ⌦ and contradictory if p = Ø.
10Formally, Cr is a function from X into [0, 1] which is extendable to a probability function (with

standard properties) on the algebra generated by X (which is the smallest algebra including X).
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Cr(p) > t in the case of a strict threshold

and Cr(p) � t in the case of a weak threshold.

More generally, we can relativize thresholds and their designations as strict or weak to

the propositions in question. We must then replace t in the expressions above with

tp, the threshold for proposition p, where each proposition-specific threshold can again

be either strict or weak. If the threshold, or its designation as strict or weak, di↵ers

across propositions, we speak of a non-uniform threshold rule, to distinguish it from the

uniform rules with an identical threshold for all propositions. Threshold rules are by no

means the only possible belief-binarization rules; later, we consider other examples.

We now introduce four desiderata that we might, at least initially, expect a belief-

binarization rule to meet; we subsequently discuss their relaxation. The first desideratum

says that the belief-binarization rule should always work, no matter which degree-of-

belief function is fed into it as input.

Universal domain. The domain of f is the set of all degree-of-belief functions on X.

So, we are looking for a universally applicable solution to the belief-binarization problem.

Later, we also consider belief-binarization rules with restricted domains.

The second desideratum says that the belief set generated by the belief-binarization

rule should always be consistent and complete (relative to X).

Belief consistency and completeness. For every Cr in the domain of f , the belief

set B = f(Cr) is consistent and complete.

Consistency is a plausible requirement on a belief set B (though we consider its relax-

ation too), but one may object that completeness is too demanding, since it rules out

suspending belief on some proposition-negation pairs. Indeed, it would be implausible to

defend completeness as a general requirement of rationality. However, for the purpose of

characterizing the logical space of possible belief-binarization rules, it is a useful starting

point, though to be relaxed subsequently. Note, further, that the present requirement

demands completeness only relative to X, the proposition set under consideration.

The third desideratum is another useful baseline requirement. It says that whether

or not one believes a given proposition p should depend only on the degree of belief in

p, not on the degree of belief in other propositions.

Propositionwise independence. For any Cr and Cr

0 in the domain of f and any p

in X, if Cr(p) = Cr

0(p) then p 2 B , p 2 B

0, where B = f(Cr) and B

0 = f(Cr

0).
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This rules out a “holistic” relationship between an agent’s degrees of belief and his or

her binary beliefs, where “holism” means that an agent’s belief concerning a proposition

p may depend on his or her degrees of belief in other propositions, not just in p. For

example, if we sought to “reduce” binary beliefs to degrees of belief, then this would be

easiest if an agent’s binary belief concerning any proposition p was simply a function

of his or her degree of belief in p. A holistic relationship between degrees of belief and

beliefs, by contrast, would rule out such a simple reduction. At best, we might achieve

a more complicated reduction, expressing an agent’s belief concerning each proposition

p as a function of his or her degrees of belief in a variety of other propositions. We later

discuss examples of holistic belief-binarization rules.

The final desideratum is quite minimal. It says that, in the highly special case in

which the degree-of-belief function is already binary (i.e., it only ever assigns degrees of

belief 0 or 1 to the propositions in X), the resulting binary beliefs should be exactly as

specified by that degree-of-belief function.

Certainty preservation. For any Cr in the domain of f , if Cr already assigns extremal

degrees of belief (0 or 1) to all propositions in X, then, for every proposition p in X, B

contains p if Cr(p) = 1 and B does not contain p if Cr(p) = 0, where B = f(Cr).

Note that this desideratum imposes no restriction unless the degree-of-belief function

assigns extremal values to all propositions in X. So, for instance, if Cr assigns a value

of 0 or 1 to some propositions but a value strictly between 0 and 1 to others, then the

antecedent condition is not met. We see little reason not to accept this desideratum,

though for completeness, we later discuss its relaxation too.

It is easy to see that, in simple cases, our four desiderata can be met by a suitable

threshold rule. For example, if the proposition set X contains only a single proposition

p and its negation ¬p, or if it contains many logically independent proposition-negation

pairs, the desiderata are met by any threshold rule that uses a (strict) threshold of t for

p and a (weak) threshold of 1� t for ¬p, where 0  t < 1. As we will see below, things

become more di�cult once the proposition set X is more complex.

4 Judgment aggregation formalized

We now move on to the formal definition of a judgment-aggregation problem (following

List and Pettit 2002 and Dietrich 2007). The proposition set X remains as defined in

the last section and is now interpreted as the set of propositions on which judgments

are to be made. In judgment-aggregation theory, this set is also called the agenda. Let
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there be a finite set N = {1, 2, ..., n} of individuals, with n � 2. Each individual i

holds a judgment set, labelled Ji, which is defined just like a belief set in the previous

section; the name “judgment set” is purely conventional. So Ji is a subset of X, which

is called consistent, complete, and implication-closed if it has the respective properties,

as defined above. As before, consistency and completeness jointly imply implication-

closure. A combination of judgment sets across the n individuals, hJ1, ..., Jni, is called a

profile. An example of a profile is given by the first three rows of Table 1 above, where

the relevant proposition set X consists of p, q, r, p ^ q ^ r, and their negations.

A judgment-aggregation rule forX is a function F that maps each profile of individual

judgment sets (within some domain of admissible profiles) to a collective judgment set

J . Like the individual judgment sets, the collective judgment set J is a subset of X.

The best-known example of a judgment-aggregation rule is majority rule: here, for

each profile hJ1, ..., Jni, the collective judgment set consists of all majority-accepted

propositions in X, formally

J = {p 2 X : |{i 2 N : p 2 Ji}| >
n

2
}.

As we have seen, a shortcoming of majority rule is that, when the propositions in X are

logically connected, the majority judgments may be inconsistent; recall Table 1.

We now state some desiderata that are often imposed on a judgment-aggregation rule.

They are generalizations of Arrow’s desiderata (1951/1963) on a preference-aggregation

rule, as discussed later. The first desideratum says that the judgment-aggregation rule

should accept as input any profile of consistent and complete individual judgment sets.

Universal domain. The domain of F is the set of all profiles of consistent and complete

individual judgment sets on X.

Informally, the aggregation rule should be able to cope with “conditions of pluralism”.

It should not presuppose that there is already a certain amount of agreement between

di↵erent individuals’ judgments.

The second desideratum says that the collective judgment set produced by the ag-

gregation rule should always be consistent and complete (again relative to X).

Collective consistency and completeness. For every profile hJ1, ..., Jni in the do-

main of F , the collective judgment set J = F (J1, ..., Jn) is consistent and complete.

The consistency requirement is easy to justify: most real-world collective decision-making

bodies – ranging from expert committees and courts to legislatures and the boards of
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organizations – are expected, at a minimum, to avoid inconsistencies in their collective

judgments. Furthermore, in many (though not all) judgment-aggregation problems,

completeness is a reasonable requirement as well, insofar as propositions are put on the

agenda (i.e., included in the setX) precisely because they are supposed to be adjudicated.

We also consider relaxations of this requirement below.

The third desideratum says that the collective judgment on any proposition p should

depend only on the individual judgments on p, not on the individual judgments on other

propositions.

Propositionwise independence. For any profiles hJ1, ..., Jni and hJ 0
1, ..., J

0
ni in the

domain of F and any p in X, if p 2 Ji , p 2 J

0
i for every individual i in N , then

p 2 J , p 2 J

0, where J = F (J1, ..., Jn) and J

0 = F (J 0
1, ..., J

0
n).

This captures the idea that when we aggregate judgments, we should consider each

proposition independently. Although this requirement is often challenged and we relax

it later, there are at least two familiar arguments in its support. First, propositionwise

independence can be viewed as a requirement of informational parsimony in collective

decision making: if an aggregation rule satisfies it, then we can determine the collective

judgment on any proposition p by considering only the individual judgments on p. There

are no holistic interaction e↵ects, whereby the collective judgment on p may change due

to a change in individual judgments on other propositions, with the individual judgments

on p remaining equal. Such holistic interaction e↵ects would complicate the relationship

between individual and collective judgments and thereby make the aggregation rule

potentially less transparent. Second, an aggregation rule that violates propositionwise

independence is vulnerable to strategic voting: individuals may strategically influence

the collective judgments on some propositions by misrepresenting their judgments on

others. If one cares about non-manipulability, one has a prima facie reason to endorse

independence as a requirement on judgment aggregation (Dietrich and List 2007c).

The final desideratum says that if all individuals hold the same individual judgment

set, this judgment set should become the collective one.

Consensus preservation. For any unanimous profile hJ, ..., Ji in the domain of F ,

F (J, ..., J) = J .

Since consensus preservation imposes restrictions only when there is a universal consen-

sus on all propositions on the agenda – not when there is a consensus only on some

propositions without a consensus on others – it is rather undemanding (especially when

the set X is large) and therefore hard to challenge.

12



As in our discussion of the four baseline desiderata on a belief-binarization rule, it is

important to note that, in simple cases, the present desiderata can easily be met. For

example, if the proposition setX contains only a single proposition p and its negation ¬p,
or if it contains many logically independent proposition-negation pairs, then majority

rule satisfies all four desiderata, as does a suitable super- or sub-majority rule.

5 The correspondence between belief binarization and

judgment aggregation

We can now describe the relationship between belief binarization and judgment aggre-

gation more precisely. Let f be a belief-binarization rule for the proposition set X. We

show that, for any group size n, we can use f to construct a corresponding judgment-

aggregation rule F for X. The construction is in two steps.

In the first step, we convert any given profile of consistent and complete individual

judgment sets into the corresponding propositionwise anonymous profile, i.e., the speci-

fication of the proportion of individual support for each proposition in X. Formally, for

each profile hJ1, ..., Jni, let CrhJ1,...,Jni be the function from X into [0, 1] that assigns to

each proposition p in X the proportion of individuals accepting it:

CrhJ1,...,Jni(p) =
|{i 2 N : p 2 Ji}|

n

.

Although the function CrhJ1,...,Jni is a “proportion-of-support” function on X, it behaves

formally like a degree-of-belief function and can thus be mathematically treated as such

a function. In particular, it is probabilistically coherent, since each individual judgment

set in hJ1, ..., Jni is consistent and complete.

In the second step, we apply the given belief-binarization rule f to the constructed

proportion function CrhJ1,...,Jni so as to yield a binary belief set, which can then be

reinterpreted as a collective judgment set. As long as CrhJ1,...,Jni is in the domain of f,

the judgment set J = f(CrhJ1,...,Jni) is well-defined, so that hJ1, ..., Jni is in the domain

of the judgment-aggregation rule that we are constructing.

These two steps yield the judgment-aggregation rule F which assigns to each admis-

sible profile hJ1, ..., Jni the collective judgment set

F (J1, ..., Jn) = f(CrhJ1,...,Jni).

Call this the judgment-aggregation rule induced by the given belief-binarization rule.

Simply put, it aggregates any given profile of individual judgment sets by binarizing the

proportion function which corresponds to that profile.
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Proposition 1. The judgment-aggregation rule F induced by a belief-binarization rule

f is anonymous, where anonymity is defined as follows.

Anonymity. F is invariant under permutations (relabellings) of the individuals. For-

mally, for any profiles hJ1, ..., Jni and hJ 0
1, ..., J

0
ni in the domain of F which are permu-

tations of one another, F (J1, ..., Jn) = F (J 0
1, ..., J

0
n).

Proposition 1 is a consequence of the fact that the proportion of individuals ac-

cepting each proposition is not a↵ected by permutations of those individuals. Formally,

we have CrhJ1,...,Jni = CrhJ 0
1,...,J

0
ni whenever the profiles hJ1, ..., Jni and hJ 0

1, ..., J
0
ni are

permutations of one another. Furthermore, the following result holds:

Proposition 2. If the binarization rule f satisfies universal domain, belief consistency

and completeness, propositionwise independence, and certainty preservation, then, for

any group size n, the induced aggregation rule F satisfies universal domain, collective

consistency and completeness, propositionwise independence, and unanimity preservation.

To show this, we suppose that the binarization rule f satisfies the relevant desiderata,

and we take F to be the induced aggregation rule for a given group size n. Then:

(i) F satisfies universal domain because, for every profile hJ1, ..., Jni of consistent and
complete individual judgment sets, the function CrhJ1,...,Jni is in the domain of f ,

and so F (J1, ..., Jn) = f(CrhJ1,...,Jni) is well-defined.

(ii) F satisfies collective consistency and completeness because, for every profile

hJ1, ..., Jni in its domain, f(CrhJ1,...,Jni) is consistent and complete.

(iii) F satisfies propositionwise independence because, for any profiles hJ1, ..., Jni and

hJ 0
1, ..., J

0
ni in its domain, if p 2 Ji , p 2 J

0
i for every individual i in N , then

CrhJ1,...,Jni(p) = CrhJ 0
1,...,J

0
ni(p), and so p 2 J , p 2 J

0, where J = f(CrhJ1,...,Jni)

and J

0 = f(CrhJ 0
1,...,J

0
ni) (by propositionwise independence of f).

(iv) F satisfies consensus preservation because, for any unanimous profile hJ, ..., Ji in

its domain, CrhJ,...,Ji assigns extremal degrees of belief (0 or 1) to all propositions

in X (namely 1 if p 2 J and 0 if p /2 J), and so we must have f(CrhJ,...,Ji) = J (by

certainty preservation of f).

In sum, the existence of a belief-binarization rule satisfying our baseline desiderata guar-

antees, for every group size n, the existence of an anonymous judgment-aggregation rule

satisfying the corresponding aggregation-theoretic desiderata. In the next section, we

discuss the consequences of this fact.
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6 An impossibility theorem

As noted, when the proposition set X is su�ciently simple, such as X = {p,¬p}, we
can indeed find belief-binarization rules for X that satisfy our four desiderata. Similarly,

for such a set X, we can find judgment-aggregation rules satisfying the corresponding

aggregation-theoretic desiderata. We now show that this situation changes dramatically

when X is more complex. In this section, we state and prove the simplest version of our

impossibility result. To state this result, call a proposition set X a non-trivial algebra if,

in addition to being closed under negation, it is closed under conjunction (equivalently,

under disjunction) and it contains more than one contingent proposition-negation pair

(where a proposition p is contingent if it is neither tautological, nor contradictory).

Theorem 1. For any non-trivial algebra X, there exists no belief-binarization rule

satisfying universal domain, belief consistency and completeness, propositionwise inde-

pendence, and certainty preservation.

To prove this result, suppose, contrary to Theorem 1, there exists a belief-binarization

rule satisfying all four desiderata for some non-trivial algebra X. Call this binarization

rule f . Consider the judgment-aggregation rule F induced by f via the construction

described in the last section, for some group size n � 2. By Proposition 1, F satisfies

anonymity. By Proposition 2, since f satisfies the four baseline desiderata on belief bina-

rization, F satisfies the corresponding four aggregation-theoretic desiderata. However,

the following result is well known to hold, as referenced and explained further below:

Background Result 1. For any non-trivial algebra X, any judgment-aggregation rule

satisfying universal domain, collective consistency and completeness, propositionwise

independence, and consensus preservation is dictatorial : there is some fixed individual i

in N such that, for each profile hJ1, ..., Jni in the domain, F (J1, ..., Jn) = Ji.

So, there could not possibly exist an anonymous (and thereby non-dictatorial) ag-

gregation rule satisfying all four conditions. Hence the belief-binarization rule f on

which the aggregation rule F was based could not satisfy our four desiderata on belief

binarization, contrary to our supposition. This completes the proof of Theorem 1.

Since subjective probability functions are normally defined on algebras, Theorem

1 shows that our four baseline desiderata are mutually inconsistent when we wish to

binarize a full-blown subjective probability function, except in trivial cases. In the

Appendix, we present a more general version of this impossibility result, derived from

a more general version of Background Result 1 (due to Dietrich and List 2007a, Dokow
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and Holzman 2010a, building on Nehring and Puppe 2010). The more general theorem

and background result are exactly like their simplified counterparts stated here, except

that they replace the assumption that the proposition set X is a non-trivial algebra with

the less demanding assumption that X satisfies a combinatorial property called “strong

connectedness”. A non-trivial algebra is just one instance of a “strongly connected”

proposition set. Other proposition sets, which fall short of being algebras, qualify as

“strongly connected” too, and so the impossibility result applies to them as well.

7 A sibling of Arrow’s impossibility theorem

The significance of Background Result 1 lies in the fact that – in its general form– it is

the judgment-aggregation variant of Arrow’s classic impossibility theorem in social choice

theory. This, in turn, means that our impossibility theorem on belief-binarization and

Arrow’s theorem are siblings in logical space: they can be derived from a commonparent

theorem. To explain this point, it is useful to revisit Arrow’s original result (1951/1963).11

As already noted, Arrow considered the aggregation of preferences, rather than judg-

ments. Let N = {1, 2, ..., n} be a finite set of individuals, with n � 2, each of whom holds

a preference ordering, Pi, over some set K = {x, y, ...} of options. Interpretationally,

the elements of K could be electoral candidates, policy proposals, or states of a↵airs,

and each Pi ranks them in some order of preference (e.g., from best to worst). A com-

bination of preference orderings across the n individuals, hP1, ..., Pni, is called a profile

of preference orderings. We are looking for a preference-aggregation rule, F , which is a

function that maps each profile of individual preference orderings (within some domain

of admissible profiles) to a collective preference ordering P . Arrow imposed four con-

ditions on a preference-aggregation rule, which were the initial inspiration for the four

baseline requirements on judgment aggregation that we have already discussed.

Universal domain. The domain of F is the set of all profiles of rational individual

preference orderings. (We here call a preference ordering rational if it is a transitive,

irreflexive, and complete binary relation onK; for expositional simplicity, we thus restrict

our attention to indi↵erence-free preference orderings.)

Collective rationality. For every profile hP1, ..., Pni in the domain of F , the collective

preference ordering R = F(P1, ..., Pn) is rational.

Pairwise independence. For any profiles hP1, ..., Pni and hP 0
1, ..., P

0
ni in the domain

11We here follow the analysis in Dietrich and List (2007a). For a precursor, see List and Pettit (2004).
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of F and any pair of options x and y in K, if Pi and P

0
i rank x and y in the same way

for every individual i in N , then P and P

0 also rank x and y in the same way, where

R = F(P1, ..., Pn) and R

0 = F(P 0
1, ..., P

0
n).

The Pareto principle. For any profile hP1, ..., Pni in the domain of F and any pair

of options x and y in K, if Pi ranks x above y for every individual i in N , then P also

ranks x above y, where R = F(P1, ..., Pn).

Arrow’s original theorem (1951/1963) now asserts the following:

Arrow’s theorem. For any set K of three or more options, any preference-aggregation

rule satisfying universal domain, collective rationality, pairwise independence, and the

Pareto principle is dictatorial : there is some fixed individual i in N such that, for each

profile hP1, ..., Pni in the domain, F(P1, ..., Pn) = Pi.

To confirm that Background Result 1 (in its fully general form) is indeed a gener-

alization of Arrow’s theorem, we note that the latter can be derived from the former.

The key observation is that, setting aside interpretational di↵erences, we can represent

any preference-aggregation problem formally as a special kind of judgment-aggregation

problem. The representation is surprisingly simple. Let the set X of propositions on

which judgments are made – the agenda – consist of all pairwise ranking propositions of

the form “x is preferable to y”, abbreviated xPy, where x and y are options in K and

P represents pairwise preference. Formally,

X = {xPy : x, y 2 K with x 6= y}.

Call this proposition set the preference agenda for K. Under the simplifying assumption

of irreflexive preferences, we can interpret yPx as the negation of xPy, and so the setX is

negation-closed. We call any subset Y of X consistent if Y is a consistent set of binary

ranking propositions relative to the rationality constraints on preferences introduced

above (transitivity etc.).12 For example, the set Y = {xPy, yPz, xPz} is consistent,

while the set Y = {xPy, yPz, zPx} is not, as it involves a breach of transitivity.

Since any preference ordering P over K is just a binary relation, it can be uniquely

represented by a subset of X, namely the subset consisting of all pairwise ranking propo-

sitions validated by P . In this way, rational preference orderings over K stand in a

one-to-one correspondence with consistent and complete judgment sets for the prefer-

ence agenda X. Further, preference-aggregation rules (for preferences over K) stand

12Technically, Y is consistent if and only if there exists at least one rational (here: transitive, irreflexive,

and complete) preference ordering over K that validates all the binary ranking propositions in Y .
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in a one-to-one correspondence with judgment-aggregation rules (for judgments on the

associated preference agenda X). Now, applied to X, the judgment-aggregation desider-

ata of universal domain, collective consistency and completeness, and propositionwise

independence reduce to Arrow’s original desiderata of universal domain, collective ratio-

nality, and pairwise independence. Consensus preservation reduces to a weaker version

of Arrow’s Pareto principle, which says that if all individuals hold the same preference

ordering over all options, this preference ordering should become the collective one.13

Of course, the proposition set X that we have just constructed is not an algebra: it

is not closed under conjunction or disjunction. However, when K contains more than

two options, X can be shown to be “strongly connected”, in the sense defined in the

Appendix, and so Background Result 1 in its general form can be applied, yielding

Arrow’s original theorem as a corollary.

Corollary of the judgment-aggregation variant of Arrow’s theorem. For any

preference agenda X defined for a set K of three or more options, any judgment-

aggregation rule satisfying universal domain, collective consistency and completeness,

propositionwise independence, and consensus preservation is dictatorial.

Figure 1 displays the logical relationships between (i) the judgment-aggregation vari-

ant of Arrow’s theorem, (ii) Arrow’s original theorem, and (iii) our baseline impossibility

theorem on belief binarization. In short, Arrow’s theorem and our result on belief bi-

narization, which are at first sight very di↵erent from one another, can both be derived

from the same common impossibility theorem on judgment aggregation.

Figure 1: The common source of two distinct impossibility results

13This desideratum is implied by Arrow’s Pareto principle (given collective rationality), but does not

generally imply it. The converse implication holds under universal domain and pairwise independence.
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8 Escape routes from the impossibility

If we wish to avoid the impossibility of belief binarization, we must relax at least one of

the baseline desiderata we have introduced. We suggest the following tentative order of

how plausible the desiderata are. (In this list, we split the consistency-and-completeness

desideratum into its components.)

(1) Certainty preservation is very plausible as well as extremely undemanding: it

only ever applies when the entire degree-of-belief function is already binary, meaning that

it assigns no values other than 0 or 1 to any propositions. Not preserving an agent’s

beliefs in this special case would be hard to defend.

(2) Universal domain seems non-negotiable if our aim is to find a universally appli-

cable belief-binarization rule. That said, it is common to study judgment aggregation

in the context of certain domain restrictions, for instance by assuming that the amount

of pluralism in individual judgments is limited. Analogously, one might ask whether we

can find plausible belief-binarization rules if we restrict the admissible degree-of-belief

functions. This suggests the theoretical possibility of relaxing universal domain.

(3) The consistency requirement on beliefs – part of the consistency-and-completeness

desideratum – is also very plausible and familiar. Nonetheless, if full consistency is too

di�cult to achieve, one might opt for a less idealistic requirement, which demands only

the avoidance of “blatantly inconsistent” beliefs, as discussed below. Perhaps real people

do not have fully consistent beliefs and only manage to avoid “blatant” inconsistencies.

(4) Implication-closure, which is a consequence of the consistency-and-completeness

desideratum, is another standard requirement on beliefs. The idea that beliefs should be

implication-closed is responsible for the intuitive force of the lottery paradox. Implication-

closure seems plausible when implication relations between propositions are transpar-

ent, for instance when the proposition set X is not very complex. However, when X is

large and complex, requiring implication-closure is tantamount to requiring logical om-

niscience, which is no longer realistic, and thus relaxing it may sometimes be warranted.

(5) Propositionwise independence is arguably a stronger candidate for relaxation. As

noted, it rules out a holistic relationship between degrees of belief and binary beliefs, by

requiring the binary belief concerning each proposition to depend only on the degree of

belief in that proposition, not on the degrees of belief in others. Since propositions form

an interconnected web, however, some propositions are relevant to others, for instance

by standing in premise–conclusion relations. So, we may plausibly let the belief on a

proposition depend on the degrees of belief in all propositions relevant to it. Further-

more, the case against relaxing propositionwise independence is weaker in the context
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of belief binarization than in the context of judgment aggregation, where aggregation

rules violating independence are vulnerable to strategic voting. There is presumably

no such strategic vulnerability in belief binarization. Even in the context of judgment

aggregation, the fact that some propositions are relevant to others is often seen as a

reason to give up propositionwise independence. In light of our impossibility result, we

may well conclude that an agent’s binary belief on each proposition cannot be a function

of his or her degree of belief in that proposition alone.

(6) Finally, completeness of beliefs – another part of the consistency-and-completeness

desideratum – is the most natural candidate for relaxation. As noted, we introduced this

requirement mainly for analytic purposes, and unlike in judgment aggregation, where

a definitive adjudication of every agenda item is often needed, completeness is not a

general requirement on binary beliefs.

In what follows, we discuss the escape routes from our impossibility result that open

up if we relax these desiderata. We consider them in the reverse order of the list just

given, beginning with the desiderata that seem most natural to give up.14

8.1 Relaxing completeness of beliefs

As noted, the initially most obvious response to our impossibility result is to argue that

the completeness requirement on beliefs is too strong. There is nothing irrational about

suspending belief on some proposition-negation pairs: neither believing the proposition,

nor believing its negation. This suggests relaxing completeness, while retaining the

familiar requirement that beliefs should be consistent and closed under logical implication

(within the set X):

Belief consistency and implication-closure. For every Cr in the domain of f , the

belief set B = f(Cr) is consistent and implication-closed (relative to X).

This permits suspending belief on some proposition-negation pairs in X. (Indeed,

even an empty belief set is consistent and implication-closed, assuming X contains no

tautology.) Surprisingly, however, the use of this weaker desideratum does not get us

very far if we insist on the other desiderata. Only a single, extremely conservative

binarization rule becomes possible, namely a uniform threshold rule with threshold 1

for all propositions. This can be viewed as a triviality result, along the lines of other

triviality results in the literature (e.g., Douven and Williamson 2006).

14For simplicity, we assume that the proposition set X is finite in Sections 8.2 to 8.5.
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Theorem 2. For any non-trivial algebra X (more generally, any “strongly connected”

proposition set), any belief-binarization rule satisfying universal domain, belief consis-

tency and implication-closure, propositionwise independence, and certainty preservation

is a threshold rule with a uniform threshold of 1 for the acceptance of any proposition,

i.e., for any degree-of-belief function Cr in the domain, f(Cr) = {p 2 X : Cr(p) = 1}.15

This result, too, is a consequence of a result on judgment aggregation, though the

proof is a bit longer than that of Theorem 1. Consider a proposition set X with the

specified properties, and suppose f is a belief-binarization rule satisfying the desider-

ata listed in Theorem 2. As before, for any group size n, f induces an anonymous

judgment-aggregation rule F . By the analogue of Proposition 2, F satisfies universal

domain, collective consistency and implication-closure, propositionwise independence,

and consensus preservation. The following result holds:

Background Result 2. For any “strongly connected” proposition setX, any judgment-

aggregation rule satisfying universal domain, collective consistency and implication-

closure, propositionwise independence, and consensus preservation is oligarchic: there is

some fixed non-empty set M of individuals in N such that, for each profile hJ1, ..., Jni in
the domain, F (J1, ..., Jn) = \

i2M
Ji (Dietrich and List 2008, Dokow and Holzman 2010b).

The set M of “oligarchs” could be any non-empty subset of N , ranging from a singleton

set, where M = {i} for some individual i, to the set of all individuals, where M = N .

In the first case, the aggregation rule is dictatorial; in the last, it is the unanimity

rule. Since any aggregation rule induced by a belief-binarization rule is anonymous,

and an anonymous aggregation rule can be oligarchic only if it is the unanimity rule,

Background Result 2 immediately implies that the induced rule F is the unanimity rule.

So, no proposition is collectively accepted under F with less than 100% support.

Could the belief-binarization rule f on which F is based still di↵er from a threshold

rule with threshold 1? A slightly more technical argument shows that if f were distinct

from such a rule, this would contradict what we have just learnt from Background

Result 2.16 And so f must be a threshold rule with a uniform threshold of 1 for the

15Unlike Douven and Williamson’s result, our result applies not only to algebras, but to all “strongly

connected” proposition sets, and it does not presuppose that the su�cient condition for belief accep-

tance is what Douven and Williamson call “structural”; rather, our desideratum of propositionwise

independence allows, in principle, the use of di↵erent acceptance criteria for di↵erent propositions.
16Suppose f is not a threshold rule with threshold 1. Then there must exist a proposition q in

X and a degree-of-belief function Cr with Cr(q) < 1 such that q 2 B, where B = f(Cr). (Here

q must be contingent: if q were tautological, we could not have Cr(q) < 1; if it were contradictory,
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acceptance of any proposition, as stated by Theorem 2. The bottom line is that relaxing

the requirement of completeness of beliefs alone, while retaining all other desiderata,

does not open up a very strong escape route from our impossibility result.

8.2 Relaxing propositionwise independence

A more promising escape route from the impossibility involves giving up the requirement

that the binary belief on any proposition p depend exclusively on the degree of belief

in p, not on the degrees of belief in other propositions. Instead, we may admit a more

“holistic” dependence of beliefs on degrees of belief, by taking an agent’s belief on p to

be a function of his or her degrees of belief across several propositions – in the limit,

an entire “web” of propositions. The “units of binarization” will then no longer be

individual propositions in isolation, but suitable sets of propositions.

How might one argue for such a more holistic approach to belief binarization? One

natural thought is that beliefs in the all-or-nothing sense pick out “salient peaks” in

the “credence landscape”, such as propositions to which the agent assigns high credence

compared to their salient alternatives.17 Relatedly, it is plausible to suggest that the

binary belief concerning any proposition p should be formed upon considering the degrees

of belief in all those propositions that are relevant to it.

To formalize these ideas, it is helpful to introduce the notion of a relevance relation

between propositions (another import from judgment-aggregation theory; see Dietrich

2015). Formally, this is a binary relation R on the proposition set X, where qRp is

interpreted to mean that q is “relevant” to p. For any proposition p in the set X, we

write R(p) to denote the set of all propositions q in X that are relevant to p, formally

R(p) = {q 2 X : qRp}.

The key idea, now, is that the binary belief on p may depend on the degrees of belief in

all propositions that are relevant to p. This suggests the following desideratum:

we could not have q 2 B, given B’s consistency.) In the Appendix, we show that, under the present

conditions, f must be monotonic: if q 2 f(Cr), then q 2 f(Cr0) for any other credence function Cr0 with

Cr0(q) > Cr(q). Consider what this implies for any induced aggregation rule F . Pick two consistent and

complete judgment sets J, J 0 ✓ X such that q 2 J and q /2 J 0, and construct a profile hJ1, ..., Jni (for a

su�ciently large n) such that a proportion of more than Cr(q) of the individuals in N , but fewer than

all, have the judgment set J and the rest have the judgment set J 0. By the construction of F , we have

F (J1, ..., Jn) = f(CrhJ1,...,Jni), where for each proposition p in X, CrhJ1,...,Jni(p) =
|{i2N :p2Ji}|

n . Since

CrhJ1,...,Jni(q) > Cr(q) and f is monotonic, we must have q 2 f(CrhJ1,...,Jni) and hence q 2 F (J1, ..., Jn),

despite the lack of unanimous support for q. This contradicts the fact that F is the unanimity rule.
17We are indebted to an anonymous reviewer for suggesting this point.
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Independence of irrelevant propositions. For any Cr and Cr

0 in the domain of

f and any p in X, if Cr(q) = Cr

0(q) for all q 2 R(p), then p 2 B , p 2 B

0, where

B = f(Cr) and B

0 = f(Cr

0).

We think this desideratum is hard to contest, provided we have specified the relevance

relation R adequately. Indeed, the demandingness of the present desideratum depends

entirely on the specification of R. The smaller the set R(p) of relevant propositions

for each proposition p, the more restrictive the desideratum becomes. By contrast, the

larger the set R(p) for each p, the more permissive it is.

Replacing propositionwise independence with independence of irrelevant propositions

makes explicit the need to specify which propositions are relevant to which others, so

that the binary beliefs on the latter may depend on the degrees of belief in the former.

This move also makes clear how restrictive the original independence desideratum is. It

seems justified only if no two distinct propositions are ever relevant to one another – a

very restrictive assumption. Formally, propositionwise independence is the special case

of independence of irrelevant propositions where R(p) = {p} for all p in X.

As we will now see, for plausible specifications of the relevance relation R, we can

avoid our impossibility result and find possible binarization rules. Again, they have

counterparts in judgment-aggregation theory. We here give the most salient examples.

Premise-based rules. A premise-based rule exploits the fact that there may be cer-

tain premise–conclusion relationships between propositions. Specifically, we designate a

subset Y of X as a set of “premises” (taking Y to be closed under negation), and assume

that the premises are relevant to all other propositions, while those other propositions

are not relevant to the premises. Formally, we assume that R(p) = Y for each p outside

Y while R(p) = {p} for each p in Y . We now (i) form the binary beliefs on all premises

by means of a suitable propositionwise independent binarization rule such as a thresh-

old rule, and (ii) derive the binary beliefs on all other propositions by logical inference.

Formally, for every degree-of-belief function Cr in the domain, we have

f(Cr) = {p 2 X : g(Cr|Y ) entails p},

where Y is the set of premises, g is the binarization rule (for Y ) used to determine the

beliefs for those premises, and Cr|Y is the restriction of the degree-of-belief function Cr

to the premise set Y .18 As long as the set Y and the rule g are chosen so as to guarantee

18For any admissible degree-of-belief function Cr, Cr|Y is the function from Y into the interval from

0 to 1 such that Cr|Y (p) = Cr(p) for each p in Y . Now g is a (propositionwise independent) function

that assigns to each such restricted degree-of-belief function Cr|Y a belief set B ✓ Y for the premises.
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a consistent set g(Cr|Y ) (e.g., by making sure that the di↵erent proposition-negation

pairs in Y are logically independent from one another), the premise-based rule will

always yield consistent and implication-closed belief sets. Furthermore, given the way

the relevance relation R has been specified, the rule satisfies independence of irrelevant

propositions. Premise-based rules have been studied extensively in judgment-aggregation

theory.19 In premise-based aggregation, a group makes its collective judgments by taking

majority votes only on some logically independent premises (e.g., “Did the defendant

do a particular action?”, “Was he or she contractually obliged not to do that action?”)

and deriving its judgments on all other propositions by logical interference (e.g., “Is the

defendant liable for breach of contract?”). The downside of a premise-based aggregation

rule is that a proposition can end up being collectively accepted by logical inference even

if only a minority, or in the extreme case none, of the individuals accept it. Similarly,

in premise-based belief binarization, a proposition could be included in the belief set

despite the assignment of a very low, or even zero, degree of belief to it. In Table 2

above, taking p, q, and r to be the premises and applying an acceptance threshold of

2/3 to them would lead to the acceptance of p, q, r, and p^q^r, despite the assignment

of a zero degree of belief to p ^ q ^ r. To be sure, the output of a premise-based rule

depends on what the specified set of premises is. Premise-based belief binarization, like

premise-based aggregation, is plausible to the extent that we have a non-arbitrary way

of selecting the premises and are prepared to generate our overall beliefs or judgments

on the basis of considering those premises alone.

Sequential priority rules. Sequential priority rules are generalizations of premise-

based rules. Here, we specify some order of priority among the propositions in X,

representable by a relevance relation R that constitutes a linear order on X (a complete,

transitive, and anti-symmetric binary relation). For each degree-of-belief function Cr,

we then construct the belief set B = f(Cr) as follows. The propositions in X are con-

sidered in the given order of priority, and the belief set B is built up sequentially. For

each proposition under consideration, say p, we begin by asking whether p is entailed by

propositions that we have included in B in earlier steps. If the answer is yes, we embrace

this entailment and include p in B. If the answer is no, we apply some propositionwise

binarization criterion to Cr(p), such as a suitable threshold, and include p in B if and

only if that binarization criterion recommends the acceptance of p and this acceptance

does not yield an inconsistent belief set. By construction, the resulting belief set is

19See, for example, Kornhauser and Sager (1986) and Kornhauser (1992), Pettit (2001), List and Pettit

(2002), Chapman (2002), Bovens and Rabinowicz (2006), List (2006), Dietrich (2006); for more recent

generalizations, see Dietrich and Mongin (2010).
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always consistent. Furthermore, the belief on each proposition p depends only on the

degrees of belief in propositions that are ahead of p in the given order of priority (includ-

ing p itself), which are precisely the propositions that are deemed relevant to p. So, the

present binarization rule satisfies independence of irrelevant propositions. Whether the

rule also generates implication-closed beliefs depends on the propositionwise binarization

criterion and the order of priority. The downside of a sequential priority rule, like that

of a premise-based rule, is that it sometimes mandates the inclusion of a proposition in

the belief set B even when the agent’s degree of belief in it is very low or zero. This can

happen when that proposition is entailed by other accepted propositions. Sequential pri-

ority rules for belief binarization are analogous to sequential priority rules for judgment

aggregation (List 2004, Dietrich and List 2007b). The only di↵erence lies in the use

of a propositionwise binarization criterion (such as a propositionwise threshold) instead

of a propositionwise aggregation criterion (such as propositionwise majority voting). In

both belief binarization and judgment aggregation, sequential priority rules may be path-

dependent : their output is not generally invariant under changes of the order of priority

among the propositions. This means that the defensibility of such a rule depends, in

part, on our ability to specify that order non-arbitrarily. However, if we take the desider-

atum of independence of irrelevant propositions seriously, then we should accept that

di↵erent specifications of the relevance relation may give rise to di↵erent binary beliefs.

Generalized priority rules. Sequential priority rules can be further generalized by

replacing a linear priority order with a more general priority graph, formally represented

by an acyclic but not necessarily complete relevance relation R.20 For example, consider

the proposition set X consisting of p, p ! q, q, q ! r, r, and their negations.21 Here the

priority graph might deem (i) r relevant to itself, (ii) each of q and q ! r relevant to r

and to itself, and (iii) each of p and p ! q relevant to q and r and to itself, as illustrated

in Figure 2. (In that figure, one proposition is relevant to another whenever there exists

a directed path along the dotted arrows from the first proposition to the second.) The

overall belief set is then defined recursively, beginning with the propositions at the “top”

of the graph (those to which no other propositions are relevant), where a propositionwise

binarization criterion is applied, such as a propositionwise credence threshold. The belief

on any “non-top” proposition (i.e., one to which some other propositions are relevant)

is formed either by logical entailment from beliefs on propositions that are “prior” to it

20By “acyclicity”, we here mean that there is no priority cycle in which p1Rp2, p2Rp3, ..., pk�1Rpk,

and pkRp1, where p1, p2, ..., pk all belong to distinct proposition-negation pairs {pj ,¬pj}.
21There are a number of possible ways of interpreting the implication arrow ! in the present context.

The easiest is to define p ! q as ¬p _ q.
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Figure 2: A priority graph

in the graph or – if the beliefs on those “prior” propositions leave the given proposition

unconstrained – by applying a propositionwise binarization criterion. One can show

that a generalized priority rule yields consistent beliefs, while satisfying independence of

irrelevant propositions, provided the priority graph is “well-behaved”. Well-behavedness,

in turn, means that R is transitive (i.e., if pRq and qRr, then pRr), negation-invariant

(i.e., if pRq then also ¬pRq and pR¬q), and there are never any logical interdependencies

between the “relevance ancestors” of pairwise mutually irrelevant propositions (where a

proposition’s “relevance ancestors” are all those propositions that are relevant to it).22

Distance-based rules. We have already encountered three classes of non-

propositionwise-independent judgment-aggregation rules that have direct analogues for

belief binarization: premise-based, sequential priority, and generalized priority rules. A

fourth class consists of the distance-based rules. Their application to belief binarization

was first investigated and defended by Chandler (2013). Let us begin by defining a

distance-based aggregation rule. To do so, we need to introduce a distance metric over

judgment sets, which specifies how “distant” any two judgment sets are from one another.

Formally, a distance metric assigns to each pair of judgment sets a non-negative number,

interpreted as the distance between them. For each profile of individual judgment sets,

we then select a collective judgment set that minimizes the sum of the distances from

the individual judgment sets, according to that distance metric. Some distance-based

aggregation rules require more information than what is contained in a propositionwise

anonymous profile, and hence have no counterpart in the case of belief binarization, but

others naturally carry over to belief binarization. The best-known distance-based aggre-

gation rule is the Hamming rule (e.g., Konieczny and Pino Pérez 2002, Pigozzi 2006).

Here the distance between any two judgment sets is given by the number of proposi-

tions in X on which the two judgment sets disagree (which means the proposition in

question is contained in one set but not in the other). For each profile of individual

22This is the binarization analogue of Theorem 1 in Dietrich (2015) (a result concerning general priority

rules in judgment aggregation), here stated informally.
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judgment sets hJ1, ..., Jni, we select a consistent and complete (or perhaps consistent

and implication-closed) collective judgment set J which minimizes

X

i2N
|{p 2 X : p 2 J 6, p 2 Ji}|.

Such a judgment set need not be unique; so we must either define the Hamming rule as

a multi-function (under which more than one collective judgment set can be assigned to

any given profile of individual judgment sets), or introduce a tie-breaking criterion. The

details need not concern us here. Note that minimizing the total Hamming distance is

equivalent to minimizing

X

p2X
|{i 2 N : p 2 J 6, p 2 Ji}|.

This, in turn, is equivalent to minimizing

X

p2X
|J(p)� CrhJ1,...,Jni(p)|,

where, for each p in X,

J(p) =

(
1 if p 2 J

0 if p /2 J

and CrhJ1,...,Jni is the function that assigns to each proposition p in X the proportion

of individuals accepting p within the given profile hJ1, ..., Jni, as defined earlier. This

suggests the following definition of a Hamming rule for belief binarization: for each

degree-of-belief function Cr, let f(Cr) be a consistent and complete (or alternatively,

consistent and implication-closed) belief set B which minimizes

X

p2X
|B(p)� Cr(p)|,

where B(p) is defined in exact analogy to J(p). Informally speaking, the Hamming rule

binarizes any given degree-of-belief function by selecting a belief set that is “minimally

distant” from it, subject to the constraints of consistency and completeness (or alterna-

tively, consistency and implication-closure).23 The Hamming rule is more “holistic” than

the premise-based and priority rules discussed earlier. Unlike those rules, the Hamming

rule assumes, in e↵ect, that all propositions are relevant to one another; the relevance

relationR with respect to which the Hamming rule is guaranteed to satisfy independence

of irrelevant propositions is the total relation, under which R(p) = X for all p in X.

23As in judgment aggregation, we must either define the Hamming rule as a multi-function, since there

may be more than one distance-minimizing belief set, or introduce some tie-breaking criterion.
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Other non-independent binarization rules. The relationship between anonymous

judgment-aggregation rules and belief-binarization rules can be used not only to derive

binarization rules from aggregation rules but also to derive aggregation rules from bina-

rization rules that have been proposed in the literature. In this way, some insights from

belief-binarization theory carry over to judgment-aggregation theory (recall Levi 2004).

Given space constraints, we here discuss only one class of rules for which this reverse

translation is possible: Leitgeb’s P-stability-based rules. Leitgeb (2014) o↵ers a method

of constructing, for each degree-of-belief function Cr (defined on some algebra of propo-

sitions), a specific acceptance threshold such that the set of all propositions for which the

agent’s degree of belief exceeds the threshold is consistent and implication-closed. Cru-

cially, the threshold may di↵er for di↵erent degree-of-belief functions. The key idea is to

identify a so-called P-stable proposition; this is a proposition p for which Cr(p|q) exceeds
1
2 for any proposition q consistent with p. The agent then accepts all those propositions

in which he or she has a degree of belief greater than or equal to t = Cr(p), where p

is the identified P -stable proposition. If we assign to each degree-of-belief function the

belief set generated through this process, we obtain a well-defined belief-binarization

rule. Since the acceptance threshold may di↵er for di↵erent degree-of-belief functions,

the present binarization rule does not satisfy propositionwise independence and thus

gives rise to a holistic relationship between degrees of belief and binary beliefs. Leitgeb

acknowledges that one feature of his proposal is “a strong form of sensitivity of belief

to context” (p. 168) and defends this holism. In the present terms, independence of

irrelevant propositions is generally satisfied only with respect to the total relation (as

in the case of the Hamming rule discussed above). Using the construction presented in

Section 5, we can use Leitgeb’s belief-binarization rule to define a corresponding anony-

mous judgment-aggregation rule. To the best of our knowledge, this aggregation rule has

not been investigated in the literature on judgment aggregation (however, for a recent

independent discussion of this idea, see Cariani 2014). It inherits its interest-value from

the arguments that Leitgeb has o↵ered in support of the underlying belief-binarization

rule. A similar translation is possible for Lin and Kelly’s camera-shutter rules for belief

binarization (2012a, 2012b). These, too, are non-independent rules that could be used

to generate corresponding judgment-aggregation rules (see also Kelly and Lin 2011).

8.3 Relaxing implication-closure of beliefs

A third escape route from our impossibility result is to relax not only the completeness

requirement on beliefs – as already discussed – but also the requirement of implication-

closure. As noted, this requirement might be challenged for large and complex sets of
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propositions, where implication-closure amounts to a requirement of logical omniscience.

Instead, we might require only the consistency of beliefs and perhaps their closure under

implication by singletons (compare Kyburg 1961). Call a belief set B closed under

implication by singletons (relative to X) if it contains every proposition p in X for which

there is some proposition q in B that entails p.24

Belief consistency (and closure under implication by singletons). For every Cr

in the domain of f , the belief set B = f(Cr) is consistent (and, if we add the closure

requirement, closed under implication by singletons).

Replacing implication-closure with this weaker requirement opens up some non-trivial

possibilities of belief-binarization, even in the presence of the other desiderata. We need

one preliminary definition. Call a set of propositions minimally inconsistent if it is

inconsistent but all its proper subsets are consistent. The following result holds (a

version of which has been independently proved by Easwaran and Fitelson 2015):

Theorem 3. Let k be the size of the largest minimally inconsistent subset of the

proposition set X. Any threshold rule with a strict threshold of k�1
k (or higher) for each

proposition satisfies universal domain, belief consistency (and closure under implication

by singletons), propositionwise independence, and certainty preservation.25

It is worth explaining the significance of k, the size of the largest minimally incon-

sistent subset of X. This parameter can be interpreted as a simple measure of the

interconnectedness between propositions in X. If X contains only one or several uncon-

nected proposition-negation pairs, then the largest minimally inconsistent subsets of X

are of the form {p,¬p}, so k is 2.26 If X contains only p, q, p ^ q, and their negations,

then the largest minimally inconsistent subset is {p, q,¬(p^ q)}, so k is 3. If X contains

only p, q, r, p ^ q ^ r, and their negations, as in our example in Section 2, then the

largest minimally inconsistent subset is {p, q, r,¬(p ^ q ^ r)}, so k is 4. In consequence,

the binarization threshold k�1
k required in Theorem 3 increases with the complexity of

these cases, from 1
2 to 2

3 to 3
4 .

27

24In other words, for any p and q in X, if q is in B and q entails p, then p is also in B.
25The highest admissible threshold in this theorem is a weak threshold of 1 (under which the acceptance

criterion for any proposition is a degree of belief of 1).
26This assumes that some proposition p in X is contingent. If X contains no contingent propositions,

then the largest minimally inconsistent subset of X is the singleton set consisting of the contradiction.
27Formulas similar to k�1

k have been used by Bovens and Hawthorne (1999), though without explicitly

invoking the notion of minimally inconsistent sets of propositions.
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To prove Theorem 3, let f be a threshold rule with a strict threshold of k�1
k (or higher)

for each proposition. It is easy to see that f satisfies universal domain, proposition-

wise independence, certainty preservation, and closure under implication by singletons.28

Suppose, for a contradiction, that B = f(Cr) is inconsistent for some degree-of-belief

function Cr in the domain. Then B must have at least one minimally inconsistent subset

Y , whose size, in turn, is at most k. For any proposition p in Y to be accepted by f , we

must have Cr(p) > k�1
k . Since Cr is probabilistically coherent, it is extendable to a prob-

ability function Pr on the algebra generated byX. This algebra contains the conjunction

of all propositions in Y . Since Y is an inconsistent set, this conjunction is a contradic-

tion and must be assigned probability 0 by Pr. But we now show that this contradicts

the fact that Pr(p) > k�1
k for every p in Y (which holds because Pr(p) = Cr(p) for any p

in X, as Pr is an extension of Cr). First note that the probability of the conjunction of

any two propositions – no matter how negatively correlated – must exceed 0 when each

proposition has a probability greater than 1
2 . Similarly, the probability of the conjunction

of any three propositions must exceed 0 when each has a probability greater than 2
3 .

Generally, the probability of the conjunction of any k propositions that each have a

probability greater than k�1
k must exceed 0, a contradiction. This completes the proof.

Again, this result has a counterpart in judgment-aggregation theory. To state it, we

require one definition. A qualified majority rule is a judgment-aggregation rule which

assigns, to each profile hJ1, ..., Jni, the collective judgment set

J = {p 2 X : |{i 2 N : p 2 Ji}| exceeds qn},

where “exceeds” can be read either strictly (as “>”) or weakly (as “�”), and q is some

acceptance threshold between 1
2 and 1. It is a supermajority rule when the acceptance

threshold requires more than a simple majority of the individuals (“50%+1”). The

following result holds:

Background Result 3. Let k be the size of the largest minimally inconsistent sub-

set of the proposition set X. Any qualified majority rule with a strict threshold of
k�1
k (or higher) for each proposition satisfies universal domain, collective consistency,

propositionwise independence, and unanimity preservation (Dietrich and List 2007b).29

It should be evident that the qualified majority rule in Background Result 3 is simply

the judgment-aggregation rule induced by the binarization rule in Theorem 3.

28The latter excludes a strict threshold of 1 for any non-contradictory proposition, but permits a weak

threshold of 1.
29The highest admissible threshold in this theorem is a weak threshold of 1 (under which the acceptance

criterion for any proposition is unanimous support).
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8.4 Relaxing consistency of beliefs

A fourth response to our impossibility result is to argue that beliefs need not be con-

sistent. Of course, if outright inconsistency of beliefs is permitted, the impossibility

we have identified goes away immediately. Even a binarization rule as simple as the

one that employs the “more-likely-than-not” criterion for belief will then be feasible.

But since inconsistent beliefs violate standard requirements of rationality, one might

wonder whether the present response is a non-starter. However, there is a notion of

less-than-fully-consistent belief which captures the idea that some inconsistencies are

less “blatant” than others, so that we might reasonably opt for a belief-binarization rule

that avoids “blatant” inconsistencies despite not securing full consistency. Indeed, typ-

ical human beings are unlikely to hold fully consistent beliefs, and so the avoidance of

blatant inconsistencies may be viewed as a plausible requirement of bounded rationality.

To introduce the relevant notion of less-than-full consistency (drawing on List 2014),

we begin with a few intuitive observations. If someone believes a proposition that is

self-contradictory, such as p ^ ¬p, he or she is rather blatantly inconsistent. If someone

believes two propositions, neither of which is self-contradictory, but which are jointly

inconsistent, such as p and ¬p, he or she is still fairly inconsistent, but less so than in

the previous case. If someone believes three jointly inconsistent propositions, any two

of which are mutually consistent, such as p, p ! q, and ¬q, his or her belief set is

still relatively inconsistent, but not as much as in the two previous cases. If someone’s

belief set contains ten jointly inconsistent propositions, any nine of which are mutually

consistent, this is nowhere near as bad as the previous inconsistencies. Now the key

idea is to interpret the size of the smallest inconsistent set of believed propositions as a

measure of the agent’s inconsistency.

Formally, let us say that a belief set B is k-inconsistent if it has an inconsistent

subset of size less than or equal to k. In our examples, a belief set that includes the

proposition p^¬p is 1-inconsistent; a belief set that includes the propositions p and ¬p is

2-inconsistent, and so on. Similarly, we say that a belief set B is k-consistent if it is free

from any inconsistent subsets of size up to k. As the value of k increases, k-consistency

becomes more demanding, and any residual inconsistencies become less “blatant”. Full

consistency is the limiting case of k-consistency as k goes to infinity. Suppose we replace

the requirement of belief consistency with the following:

Belief k-consistency (for some fixed value of k). For every Cr in the domain of f ,

the belief set B = f(Cr) is k-consistent.

We then obtain a possibility result:
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Theorem 4. Any threshold rule with a strict threshold of k�1
k (or higher) for each propo-

sition satisfies universal domain, belief k-consistency, propositionwise independence, and

certainty preservation.30

The proof of this theorem, which we omit for brevity, is very similar to that of

Theorem 3 above. The key point is that a probabilistically coherent function Cr could

never assign a degree of belief greater than k�1
k to each of k or fewer mutually inconsistent

propositions; the implied subjective probability of their conjunction would then have to

be greater than 0, which would violate probabilistic coherence. Like our other results,

Theorem 4 has an analogue in judgment-aggregation theory.

Background Result 4. Any qualified majority rule with a strict threshold of k�1
k (or

higher) for each proposition satisfies universal domain, collective k-consistency, proposi-

tionwise independence, and unanimity preservation (List 2014).31

In sum, agents who are prepared to settle for less-than-full consistency in their beliefs,

while still avoiding “blatant” inconsistencies, can safely use threshold rules with a su�-

ciently high threshold.32

8.5 Relaxing universal domain

A fifth, more theoretical escape route from our impossibility result opens up if we relax

the desideratum of universal domain. Recall that universal domain requires the belief-

binarization rule to work for every well-defined degree-of-belief function. As the name

of the desideratum suggests, this ensures the binarization rule’s universal applicability.

If, however, we suitably restrict the domain of admissible degree-of-belief functions, we

can find a belief-binarization rule satisfying the other desiderata.

Suppose, for example, that a degree-of-belief function Cr is deemed admissible only

if it has the property that, for every minimally inconsistent subset Y of X, there is at

least one proposition in p in Y with Cr(p)  1
2 . It then follows that even a permissive

binarization rule such as a “more-likely-than-not rule” (a threshold rule with a strict

threshold of 1
2 for all propositions) will never generate an inconsistent belief set B. If

B were inconsistent for some Cr in the restricted domain, then B would have to have

some minimally inconsistent subset Y , which, in turn, would have to contain at least one

30As before, the highest admissible threshold in this theorem is a weak threshold of 1.
31Once again, the highest admissible threshold in this theorem is a weak threshold of 1.
32For a further critical discussion of the consistency requirement on belief, see Briggs, Cariani,

Easwaran, and Fitelson (2014).
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proposition p for which Cr(p)  1
2 (as Cr is in the restricted domain). But then p would

not be accepted under a threshold rule with a strict threshold of 1
2 . More generally, if we

admit only credence functions with the property that, for every minimally inconsistent

subset Y of X, there is at least one proposition p in Y with Cr(p)  t, then any threshold

rule with a strict threshold of t or above will guarantee consistency.

When translated into restrictions on admissible profiles of judgment sets in judgment-

aggregation theory, the domain restrictions just mentioned match the domain restrictions

required for the consistency of majority rule and supermajority rule with threshold t,

respectively. In judgment-aggregation theory, domain restrictions are often associated

with situations in which the group of individuals whose judgments are aggregated is

reasonably “cohesive”: disagreements among the individuals are limited. For example,

if a group engages in collective deliberation before voting, this might reduce any dis-

agreements, even if it does not produce a full consensus, and an aggregation rule with

a restricted domain may become applicable. This is in fact a much-discussed idea of

deliberative democracy. In belief-binarization theory, it is harder to justify the required

domain restrictions in a non-ad-hoc way. Still, it is worth acknowledging the theoretical

possibility of satisfying our other desiderata (apart from universal domain) if the agent’s

degree-of-belief function falls into a su�ciently restricted domain.

8.6 Relaxing certainty preservation

As we have noted, a final logically possible escape route from our impossibility result

is to relax certainty preservation. However, this escape route is of little interest. First,

certainty preservation is a very undemanding and plausible requirement and thus hard

to relax. Second, even if we were prepared to give it up, this would not get us very far.

For a large class of proposition sets X, we would still be faced with an impossibility

result. To state this result, call a proposition p an atom of X if, for every proposition q

in X, p entails exactly one of q or ¬q. Further, call the proposition set X atom-closed if

it contains an exhaustive set of atoms.33 It is easy to see that any finite proposition set

X that forms an algebra is atom-closed. The following result holds:

Theorem 5. For any atom-closed proposition set X that contains more than one contin-

gent proposition-negation pair, any belief-binarization rule satisfying universal domain,

belief consistency and completeness, and propositionwise independence is constant : it

delivers as its output the same fixed belief set B, no matter which degree-of-belief func-

tion Cr is fed into it as input.

33Formally, X is atom-closed if the set {¬p 2 X : p is an atom of X} is inconsistent.
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Of course, such a binarization rule is totally useless. According to it, the agent’s binary

beliefs are completely unresponsive to his or her degrees of belief. Like our earlier results,

Theorem 5 is a corollary of an analogous theorem on judgment aggregation.

Background Result 5. For any atom-closed proposition setX that contains more than

one contingent proposition-negation pair, any judgment-aggregation rule satisfying uni-

versal domain, collective consistency and completeness, propositionwise independence,

and consensus preservation is either dictatorial or constant (Dietrich 2006; for a related

result, see Pauly and van Hees 2006).

It is fair to conclude, then, that the relaxation of certainty preservation o↵ers no

compelling escape route from our impossibility result.

9 Concluding remarks

We have investigated the relationship between degrees of belief and binary beliefs through

the lens of judgment-aggregation theory. We have proved a baseline impossibility theo-

rem, which turns out to be a sibling of Arrow’s classic impossibility theorem on prefer-

ence aggregation. The two results are each corollaries of a single, mathematically more

general impossibility theorem on judgment aggregation, as illustrated in Figure 1 above.

The message of our analysis is that the possibilities of expressing beliefs as a function

of degrees of belief are very limited. Any such possibility requires the relaxation of at

least one of our four baseline desiderata, and in each case this comes at a cost:

(i) If we relax universal domain, we must use a binarization rule that does not work

for all possible degree-of-belief functions and hence is not universally applicable.

(ii) If we relax belief consistency and completeness, then, depending on whether or not

we still retain implication-closure, we must either use an extremely conservative

acceptance criterion for every proposition – namely a degree-of-belief threshold of 1 –

or live with violations of implication-closure or consistency. Suitable threshold rules

can, however, satisfy belief consistency and closure under implication by singletons.

(iii) If we relax propositionwise independence, we must accept a holistic relationship

between degrees of belief and beliefs, whereby an agent’s belief in one proposition

may be a↵ected by changes in his or her degrees of belief in others. We suggest

that embracing this holism (which Leitgeb describes as “a strong form of sensitivity

of belief to context”) is still the most palatable way to avoid our impossibility
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result, and it is supported by the existence of certain relevance relations betweens

propositions. Indeed, several established proposals on belief binarization give up

independence (e.g., Chandler 2013, Leitgeb 2014, and Lin and Kelly 2012a, 2012b).

(vi) If we relax certainty preservation, finally, we face another negative result: for a

large class of proposition sets, the only binarization rules satisfying the other three

desiderata are constant rules, under which the agent’s beliefs are not responsive at

all to his or her degrees of belief.

If pressed to choose one of these escape routes from our impossibility result, we would opt

for (iii) or (ii). However, for those who are reluctant to embrace any of these possibilities,

a natural conclusion may be that the search for a simple formal relationship between

degrees of belief and binary beliefs is futile.

The most radical version of this conclusion would be the denial that agents really

have both kinds of belief. Extreme Bayesians, for instance, might hold that agents have

no binary beliefs. On that view, beliefs always come in degrees, and “full belief” is, at

most, the limiting case in which the degree of belief is 1. The opposite view would be

that degrees of belief are theoretical constructs of probability theory and that, in reality,

agents have only binary beliefs. On this picture, degrees enter at most in the content

of a belief. An agent might have a full belief in the proposition that the probability

of another proposition is x. Here, the attitude towards the “outer” proposition is an

all-or-nothing attitude, which does not come in degrees; it just so happens that that

proposition asserts a probability assignment to another proposition – the “inner” one.

A less radical conclusion would be that agents have degrees-of-belief as well as binary

beliefs, but that the two kinds of belief may come apart and are not related in any simple

way: they may be two distinct aspects of an agent’s credal state, neither of which is

determined by the other. To defend that picture, one would have to say more about

what such a multi-faceted credal state would look like – a topic well beyond the scope

of this paper. (For a recent relevant discussion, see Easwaran and Fitelson 2015.)

What we can conclude is that, if one is unwilling to relax the standard consistency

and closure requirements on binary beliefs, then the prospects for expressing those beliefs

as a propositionwise function of degrees of belief are extremely slim. The binary belief

on a proposition may not generally supervene on the degree of belief in that proposition

alone. Our aim has been to lay out some salient impossibilities and possibilities of belief

binarization, and to o↵er a systematic analysis of the relevant logical space, in the hope

that this exercise will inspire further exploration.
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Appendix

The judgment-aggregation variant of Arrow’s theorem and its corollary

for belief binarization

We now state Background Result 1 and Theorem 1 in full generality. As noted, the

significance of the fully general background result lies in the fact that it is the judgment-

aggregation variant of Arrow’s impossibility theorem. While in the simplified exposition

in Section 6 we required the proposition set X to be a non-trivial algebra, we now
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merely require it to be what we call “strongly connected”. A proposition set X is

strongly connected if it has the following two combinatorial properties, which are jointly

weaker than the previous requirement that X be a non-trivial algebra:34

Path-connectedness. For any two contingent propositions p, q in X, there exists a

path of conditional entailments from p to q (as explicated in a footnote).35

Pair-negatability. There exists a minimally inconsistent subset Y of X which contains

two distinct propositions p and q such that replacing p and q with ¬p and ¬q renders Y

consistent.36

Many di↵erent proposition sets are strongly connected in this sense. A simple exam-

ple is the set X consisting of p, q, p ^ q, p _ q, and their negations.37 Another example

is a set X consisting of binary ranking propositions of the form “x is preferable to y”,

“y is preferable to z”, “x is preferable to z”, and so on, where x, y, z, ... are three

or more electoral options, as discussed in Section 7. A third example, familiar from

the main text, is a set X which constitutes an algebra with more than one contingent

proposition-negation pair. The judgment-aggregation variant of Arrow’s theorem, in full

generality, can now be stated as follows:

Background Result 1 (fully general version). For any strongly connected propo-

sition set X, any judgment-aggregation rule satisfying universal domain, collective con-

sistency and completeness, propositionwise independence, and consensus preservation is

dictatorial (Dietrich and List 2007a, Dokow and Holzman 2010a, building on Nehring

and Puppe 2010).38

34The first property was originally introduced by Nehring and Puppe (2010) in a di↵erent formalism

under the name “total blockedness”. The second was introduced, in di↵erent variants, by Dietrich (2007),

Dietrich and List (2007a), and Dokow and Holzman (2010a), sometimes under the name “non-a�neness”.
35Formally, a proposition p conditionally entails a proposition q if there exists some subset Y of X,

consistent with each of p and ¬q, such that {p} [ Y entails q. A path of conditional entailments from p

to q is a sequence of propositions p1, p2, ..., pk in X with p1 = p and pk = q such that p1 conditionally

entails p2, p2 conditionally entails p3, ..., and pk�1 conditionally entails pk.
36Formally, Y \{p, q} [ {¬p,¬q} is consistent.
37To prove path-connectedness, note that, from any one of these propositions, we can find a path of

conditional entailments to any other (e.g., from p to q via p _ q: p entails p _ q, conditional on the

empty set; and p_ q entails q, conditional on {¬p}). To prove pair-negatability, note that the minimally

inconsistent set Y = {p, q,¬(p ^ q)} becomes consistent if we replace p and q with ¬p and ¬q.
38This theorem was proved independently, in di↵erent formal frameworks, by Dietrich and List (2007a)

and Dokow and Holzman (2010a). The latter proved in addition that, if X is finite, the two combinatorial

properties of X are not only su�cient, but also necessary for the theorem’s conclusion to hold. Both of
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Put di↵erently, whenever X is strongly connected, there exists no non-dictatorial

aggregation rule satisfying the four desiderata. It should be clear from our earlier dis-

cussion that this result has a direct corollary for belief binarization, which can be derived

in exact analogy to the main-text version of Theorem 1 above. The non-existence of any

non-dictatorial judgment-aggregation rule for X satisfying the four desiderata implies

the non-existence of any anonymous such rule. Since any belief-binarization rule for X

satisfying our four binarization desiderata would induce such an aggregation rule, there

cannot exist a binarization rule of this kind. In sum, the following theorem holds:

Theorem 1 (fully general version). For any strongly connnected proposition set

X, there exists no belief-binarization rule satisfying universal domain, belief consistency

and completeness, propositionwise independence, and certainty preservation.

In what follows, we present a further refinement of this result, namely a characteriza-

tion of the minimal (necessary and su�cient) conditions on the proposition set X under

which Theorem 1’s negative conclusion – the non-existence of any belief-binarization rule

satisfying the four desiderata – holds. Theorem 1 itself gives only a su�cient condition

on X for that conclusion to hold, not a necessary condition.

Minimal conditions for the impossibility result on belief binarization

In the case of the judgment-aggregation variant of Arrow’s theorem, it is known that

the “strong connectedness” requirement on the proposition set X is not only su�cient,

but also necessary for the theorem’s negative conclusion, as long as X is finite (Dokow

and Holzman 2010a, building on Nehring and Puppe 2010). In other words, if the set X

is either not path-connected or not pair-negatable, there exist non-dictatorial judgment-

aggregation rules satisfying the four desiderata; we no longer face an impossibility.

Interestingly, the same combinatorial properties, while su�cient for our impossibility

result on belief binarization, are not necessary for it. We can derive the impossibility

even under weaker assumptions about the proposition set X. This is because, as we

have seen, belief binarization corresponds to a particularly restrictive case of judgment

aggregation: the case of propositionwise anonymous aggregation. In the presence of this

special restriction, judgment aggregation also runs into an impossibility more easily.

Consider the following combinatorial property, which is weaker than

path-connectedness (Nehring and Puppe 2010).

the cited papers build on earlier work by Nehring and Puppe, reported in Nehring and Puppe (2010).

Their version of the theorem imposes an additional monotonicity desideratum on the aggregation rule,

but does not require pair-negatability of X.
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Blockedness. There is at least one proposition p in X such that there exists a path of

conditional entailments from p to ¬p and also a path of conditional entailments from ¬p
to p. (Paths of conditional entailments are defined as before.)

For example, the set consisting of p, q, p $ q, and their negations is blocked (with

$ understood as a material biconditional), while the set consisting of p, q, p ^ q, and

their negations is not.39 The following background result holds:

Background Result 6. There exist judgment-aggregation rules satisfying universal

domain, collective consistency and completeness, propositionwise independence, consen-

sus preservation, and anonymity for all group sizes n if and only if the proposition set

X is not blocked (Dietrich and List 2013, building on Nehring and Puppe 2010).40

We now use this result to the derive the following:

Theorem 6. For any proposition setX that is blocked, there exists no belief-binarization

rule satisfying universal domain, belief consistency and completeness, propositionwise in-

dependence, and certainty preservation. Conversely, for any finite proposition set X that

is not blocked, there exists such a belief-binarization rule.

Before we prove this result, it is worth commenting on its significance. The present

theorem establishes exact minimal conditions on X for the impossibility of belief bina-

rization to hold. To illustrate, even for a proposition set as simple as the one consisting

of p, q, p $ q, and their negations, there exists no belief-binarization rule satisfying

our four baseline desiderata (because the proposition set is blocked). By contrast, for

the proposition set consisting of p, q, p ^ q, and their negations, there exists such a

rule (because the set is not blocked), although, as we explain below, the rule is fairly

“degenerate”. It would accept any proposition among p, q, and p ^ q if and only if the

agent assigns degree of belief 1 to it, and would accept its negation otherwise.

To prove Theorem 6, let us first assume that the proposition set X is blocked, and

suppose, contrary to Theorem 6, there exists a belief-binarization rule for X satisfying

all four desiderata. Call it f . We have seen that, for any group size n, f induces an

anonymous judgment-aggregation rule F , via the construction described in Section 5,

39To show that the first set is blocked, it su�ces to observe that there exist paths of conditional

entailments from p to ¬p and back. To see the former, note that {p}[{p $ q} entails q, and {q}[{¬(p $
q)} entails ¬p. To see the latter, note that {¬p}[{p $ q} entails ¬q, and {¬q} [ {¬(p $ q)} entails

p. To show that the second set is not blocked, it su�ces to observe that there is no path of conditional

entailments from ¬p to p, from ¬q to q, or from ¬(p ^ q) to p ^ q.
40The “if” claim assumes that the proposition set X is finite.
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and this aggregation rule satisfies all four aggregation-theoretic desiderata. However,

the existence of such a judgment-aggregation rule contradicts Background Result 6. So,

there cannot exist a belief-binarization rule of the specified kind. This completes the

negative part of the proof.41

Conversely, let us assume that the proposition set X is finite and not blocked. The

following result holds:

Background Lemma 1. If the proposition set X is finite and not blocked, there exists

at least one consistent and complete subset B⇤ ✓ X which has at most one proposition

in common with every minimally inconsistent subset Y ✓ X (Nehring and Puppe 2010).

To illustrate, recall that the set X consisting of p, q, p ^ q, and their negations is

not blocked. Indeed, we can find a subset B

⇤ ✓ X which has at most one proposition

in common with every minimally inconsistent subset Y ✓ X. Take B

⇤ = {¬p,¬q,¬(p ^
q)}. The minimally inconsistent subsets of X are firstly all the proposition-negation

pairs, with which B

⇤ obviously has only one proposition in common, secondly the sets

{¬p, p ^ q} and {¬q, p ^ q}, with which B

⇤ again has only one proposition in common,

and finally Y = {p, q,¬(p ^ q)}, with which B

⇤ also has only proposition in common.

To establish the existence of a belief-binarization rule satisfying all four desiderata,

we construct one such rule. Define f as follows. For every degree-of-belief function Cr

on X, let f(Cr) = B, where

B = {p 2 X : Cr(p) = 1 or [p 2 B

⇤ and Cr(p) 6= 0]} ,

where B

⇤ is as specified in Background Lemma 1. To give an intuitive flavour of this

binarization rule, let us interpret B⇤ as a “default belief set”. The present binarization

rule then “accepts” a proposition p if and only if the agent assigns degree of belief 1 to

that proposition or the proposition belongs to the default set and the agent does not

assign degree of belief 0 to it. (This is in fact a special kind of non-uniform threshold

rule, with a strict threshold of 0 for all propositions in B

⇤ and a weak threshold of 1 for

all other propositions.) Why does this binarization rule satisfy the four desiderata? Let

us begin with the desiderata that are easy to check:

• f satisfies universal domain because it is well-defined for every degree-of-belief

function on X.
41Alternatively, some of the additional formal results in the second part of the Appendix could be

used to give a direct proof of this negative result.
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• f satisfies propositionwise independence because, under its definition, the all-or-

nothing belief in any proposition p (i.e., whether or not p is in B) depends only

on the degree of belief in p (i.e., Cr(p)), not on the degree of belief in other

propositions.

• f satisfies certainty preservation because, for any degree-of-belief function Cr that

assigns extremal degrees of belief (0 or 1) to all propositions in X, the definition

of f ensures that B contains all propositions p in X for which Cr(p) = 1 and does

not contain any for which Cr(p) = 0.

• f satisfies belief completeness because, for every degree-of-belief function Cr and

every proposition-negation pair p, ¬p in X, one of the two propositions always

satisfies the criterion for membership in B = f(Cr).

Finally, to see that f satisfies belief consistency, suppose, for a contradiction, that B =

f(Cr) is inconsistent for some degree-of-belief function Cr on X. Then B, being a

finite inconsistent set of propositions, has at least one minimally inconsistent subset Y .

By Background Lemma 1, at most one proposition in Y occurs in B

⇤. Consider first

the case in which there is no such proposition. For all propositions q in Y , it then

follows immediately that Cr(q) = 1; otherwise those propositions could not have met

the membership criterion for B (of which Y is a subset). But since Cr is probabilistically

coherent, the fact that Cr(q) = 1 for all q in Y contradicts the inconsistency of Y . So let

us turn to the alternative case in which exactly one proposition in Y occurs in B

⇤. Call it

p. For all propositions q in Y distinct from p, it follows again that Cr(q) = 1; otherwise

those propositions could not have met the membership criterion for B (of which Y is a

subset). But since Y is inconsistent and Cr is probabilistically coherent, the fact that

Cr(q) = 1 for all q in Y distinct from p implies that Cr(p) = 0, and so p cannot meet

the membership criterion for B, a contradiction. This completes our proof that f does

indeed satisfy the four desiderata on belief binarization.

To emphasize, we do not claim that f is a substantively interesting binarization rule.

The point of its construction is merely to show that, if the set X violates the property

of blockedness, the impossibility result of Theorem 6 no longer goes through.

Some additional formal results

In this final section, we prove some additional formal results to give some further insights

into the consequences of our desiderata on the belief-binarization rule f . We have already

relied on one of these insights (about the monotonicity of f) in one of our earlier proofs
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(in Section 8.1). Moreover, the present results allow us to establish some facts about

belief binarization “directly”, i.e., not as corollaries of background results on judgment

aggregation.

Let f be a belief-binarization rule satisfying propositionwise independence. This

implies that, for every proposition p in X, the question of whether or not p is included

in the belief set B depends only on the degree of belief in p. For each proposition p, let

Cp be the set of those credence values in [0, 1] for which p is accepted into B, i.e.,

Cp = {x 2 [0, 1] : p 2 f(Cr) for some admissible Cr with Cr(p) = x}.

Call the elements of Cp the acceptance credences for p. We can then represent f in terms

of the family (Cp)p2X of sets of acceptance credences:

for any admissible Cr, f(Cr) = {p 2 X : Cr(p) 2 Cp}.

Claim 1. If f satisfies, in addition, universal domain and certainty preservation,

then, for every proposition p in X (where p 6= Ø), we must have 1 2 Cp.

To see this, consider any {0,1}-valued degree-of-belief function Cr such that Cr(p)=1.

Since p 6= Ø, a well-defined (i.e., probabilistically coherent) such degree-of-belief function

exists, and since f satisfies universal domain, Cr is in the domain of f . Certainty

preservation then implies that p must be contained in B = f(Cr), and hence 1 2 Cp.

Claim 2. If f satisfies, in addition, implication-closure, then, for any two proposi-

tions p, q in X, if p conditionally entails q, then every acceptance credence for p is also

an acceptance credence for q, and thus Cp ✓ Cq.

To show this, suppose p conditionally entails q, and x is an acceptance credence for

p. Because of this conditional entailment, there exists a subset Y ✓ X, consistent with

each of p and ¬q, such that {p} [ Y entails q. It is easy to see that {p, q} [ Y and

{¬p,¬q}[Y are each consistent sets. For this reason, there exist well-defined degree-of-

belief functions Cr

0 and Cr

00 such that Cr

0 assigns credence 1 to all the propositions in

the first set, and Cr

00 assigns credence 1 to all the propositions in the second set. Since

any linear average of well-defined degree-of-belief functions is probabilistically coherent,

the degree-of-belief function Cr = xCr

0 + (1 � x)Cr

00 is well-defined. Let B = f(Cr).

Note the following. First, we have p 2 B, because Cr(p) = x, and x is an acceptance

credence for p. Second, we have Y ✓ B, because Cr(r) = 1 for every r 2 Y , and 1 is an

acceptance credence for every proposition (by Claim 1). Finally, since {p}[ Y ✓ B and
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{p}[ Y entails q, we must have q 2 B, because B is implication-closed. But Cr(q) = x;

so x is an acceptance credence for q too.

Claim 3. If f is as in Claim 2, then for any two propositions p, q in X that are

connectable, in both directions, by a path of conditional entailments, we have Cp = Cq.

This follows immediately from Claim 2. Note further that, if all propositions con-

nectable, in both directions, by a path of conditional entailments, then the binarization

rule f is representable by a single set C ✓ [0, 1] of acceptance credences, which are

applied to every proposition in X.

Claim 4. If f is representable by a single C and X is pair-negatable, then f is

monotonic, meaning that, for any x, y in [0,1] with y > x, if x is in C, then y is also

in C. This implies that f is a threshold rule with t = inf(C). The threshold is weak if

inf(C) 2 C and strict otherwise.

To prove this, consider some x in C, and consider any y > x. Suppose X is pair-

negatable. Then X has a minimally inconsistent subset Y in which we can find two

distinct propositions p, q such that Y \{p, q} [ {¬p,¬q} is consistent. Since the sets

Y \{q} [ {¬q}, Y \{p, q} [ {¬p,¬q}, and Y \{p} [ {¬p} are each consistent (the first

and last because of Y ’s minimal inconsistency), there exist well-defined degree-of-belief

functions Cr

0, Cr

00, and Cr

000 that assign credence 1 to all propositions in the first set,

to all propositions in the second, and to all propositions in the third set, respectively.

Now consider the function Cr = xCr

0 + (y � x)Cr

00 + (1 � y)Cr

000. Because Cr is a

linear average of three well-defined degree-of-belief functions, Cr is itself a well-defined

degree-of-belief function. Let B = f(Cr). Since x 2 C, we must have p 2 B. Since all

elements of Y \{p, q} are assigned credence 1 by Cr and 1 2 C (by Claim 1), we must

have Y \{p, q} ✓ B. Since Y in its entirety is inconsistent, Y \{q} entails ¬q, and hence

B entails ¬q. By implication-closure of B, ¬q must be in B. But Cr(¬q) = y, and hence

y is in C, as required.
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