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Abstract

Ever since the Harsanyi-Sen debate, it is controversial whether someone�s welfare
should be measured by her von-Neumann-Morgenstern (VNM) utility, for instance
when analysing welfare intensity, social welfare, interpersonal welfare comparisons,
or welfare inequality. As we show, natural working assumptions lead to a di¤erent
welfare measure, which addresses familiar concerns about VNM utility while also
requiring only ordinal evidence, such as observed choices or self-reported comparisons.
Using this measure instead of VNM utility has di¤erent implications, for instance for
social welfare and policy recommendations, in riskless or risky contexts. VNM utility
is shown to be have two determinants, namely welfare and attitude to risk in welfare.

1 Introduction

How should someone�s welfare be measured? This is an important methodological
question. In practice, economists often use VNM utility to measure welfare. The
reason is that a VNM utility function (if existent) rests solely on ordinal evidence,
such as revealed preferences or self-reported comparisons between lotteries. The key
limitation of such a welfare measure is that it arguably fails to adequately capture
non-ordinal information like information about welfare intensity or absolute welfare
levels. Non-ordinal welfare information is however essential for many applications,
such as: aggregating individual into social welfare, comparing welfare levels (or dif-
ferences) across people, measuring inequality in welfare, and making welfare-based
policy recommendations. The question of whether VNM utility captures non-ordinal
welfare information (and is thus useful in such applications) is however controversial.
It has culminated in the Harsanyi-Sen debate in the 1970s, and counts today among
the most notorious open foundational problems in welfare economics and formal eth-
ics.

Critics of VNM utility as a welfare measure have so far not come up with an altern-
ative measure that is also based on ordinal evidence. The lack of ordinal foundations
exposes these critics to the �non-observable�objection, if one follows the ordinalist tra-
dition according to which all evidence about welfare is ordinal. The ordinalist notion
of evidence is itself controversial, but we will make this classic economic assumption
here.

Rather than settling the Harsany-Sen debate substantively, this paper provides
a proof of concept for the VNM-sceptic position, by showing that purely ordinal

1Acknowledgements TBA. This work has been presented at SEAT (Paris, July 2023), Centre
d�Economie de la Sorbonne (Paris 1, November 2023), and the Workshop on the Foundations of
Decision Theory (LMU Munich, June 2024).
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evidence leads to a di¤erent welfare measure if one accepts some plausible working
assumptions. This measure will respond to classic objections against VNM utility as
a welfare measure.

We start from the familiar idea, analysed notably in Bell and Rai¤a (1988), that
someone�s VNM utility function is a¤ected by two di¤erent things: the welfare or
�intrinsic utility�derived from outcomes, and the attitude to risk in welfare or �in-
trinsic risk�. In the example in Figure 1, an individual has a concave VNM utility

Figure 1: A VNM utility function and four possible explanations in terms of welfare
and intrinsic risk attitude

function over possible wealth levels (plotted in red), and we consider four alternative
explanations, which di¤er in the agent�s welfare function (plotted in blue) and her
intrinsic risk attitude:

� Case 1: constant marginal welfare & intrinsic risk aversion. The welfare from
an extra 1$ is the same regardless of initial wealth, and facing a lottery of wealth
levels is worse than having the expected welfare for sure (we say �expected
welfare�rather than �expected wealth�to refer to the attitude to risk in welfare
rather than in wealth). Welfare is linear, and utility is concave in welfare, thus
concave in wealth.

� Case 2: diminishing marginal welfare & intrinsic risk neutrality. An extra
$1 gives less extra welfare if the person is wealthier, and facing a lottery is
indi¤erent to having the expected welfare for sure. Welfare is concave, and
utility coincides with welfare.
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� Case 3: diminishing marginal welfare & intrinsic risk aversion. Welfare is
concave, and utility is concave in welfare and thus (more) concave in wealth.

� Case 4: increasing marginal welfare & strong intrinsic risk aversion. An extra
$1 givesmore extra welfare if the person is wealthier (implausibly), and a lottery
is much worse than having the expected welfare for sure. Welfare is convex, and
utility is so strongly concave in welfare that it is concave in wealth.

In all four plots in Figure 1, the utility and welfare functions are normalised so that
they take value 0 and derivative 1 at a �xed wealth level.

The problem is that it is impossible on the standard approach to know the agent�s
welfare function based on the utility function: none of the four cases can be ruled out
empirically. In result, one cannot assess social welfare, measure welfare inequality, or
make welfare-driven policy choices. This paper will propose a way to overcome this
dilemma. It will make welfare indirectly observable.

Our premise that VNM utility has two determinants �welfare (intrinsic utility)
and attitude to welfare-risk (intrinsic risk attitude) �will resonate with most rational
choice theorists, who indeed routinely invoke both determinants. Still, this view can
be challenged in di¤erent ways. Let us now sketch some prominent understandings
of �utility�and �welfare�, only some of which are compatible with our picture.

Sen (1977) andWeymark (1991) forcefully argue for distinguishing between someone�s
welfare with her VNM utility. Bell and Rai¤a (1988), Nissan-Rosen (2015), Dietrich
and Jabarian (2022) and many others endorse the distinction. Yet for instance Harsa-
nyi, Broome (1991), McCarthy, Greaves (2017), and McCarthy et al. (2020) question
or even reject the distinction. Fleurbaey and Mongin (2016) take a nuanced view.

For John Harsanyi, welfare just is VNM utility. Still his notion of welfare is not
simply ordinal: for him, welfare is not just a numerical representation of ordinal com-
parisons, but (when suitably normalised) contains information about welfare intensity
and interpersonal comparisons. On his view, ordinal evidence (i.e., preferences) gen-
erate a non-ordinal welfare measure. Unlike us, he abandons the distinction between
welfare-related and risk-attitudinal aspects: for him, risk aversion comes precisely
from diminishing marginal welfare. To us, this reduction con�ates two entirely dis-
tinct phenomena. It is perfectly possible to dislike unpredictability without having
diminishing marginal welfare, or vice versa.

First-generation economists used to perfectly distinguish between someone�s wel-
fare and her taste for risk. They used the term �utility�in a sense that is free of risk
preferences and corresponds to what we call �welfare�or �intrinsic utility�rather than
�VNM utility�. Accordingly, their �law of diminishing marginal utility�does not re�ect
any risk aversion but diminishing bene�ts from consumption. Yet they did not tell
us how to measure welfare from ordinal data, a problem tackled here.

Arrow and Pratt, the fathers of the modern theory of risk aversion (Pratt 1964,
Arrow 1965), regard risk preferences as the sole origin of the VNM utility function �
at least following the dominant perception of their theory and the label �theory of risk
aversion�. Their theory could be reinterpreted more broadly, as a theory about the
combination of (intrinsic) risk attitude and marginal welfare. On this reinterpretation,
VNM utility is a hybrid quantity combining welfare and (intrinsic) risk attitudes, in
line with our approach. Yet, although Arrow-Pratt�s theory (so re-interpreted) is
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compatible with an independent notion of welfare, it does not tell us how to derive
it.

Peter Wakker (2010) takes an interestingly di¤erent view. He defends a clean
separation between risk attitude and welfare, but takes only welfare to a¤ect VNM
utility. The risk attitude instead a¤ects the weighing of subjective probabilities within
a choice model that follows prospect theory and rank-dependence rather than ordinary
expected-utility theory �an approach similar to Buchak�s (2013). On this view, VNM
utility has a single determinant �marginal welfare �yet not because the risk attitude
is merely a by-product of marginal welfare (as for Harsanyi) but because the risk
attitude enters at a di¤erent level (the probability weighting). Given that VNM
utility is then a purely welfare-theoretic construct free of the risk attitude, Arrow-
Pratt�s theory �of risk aversion�would be reinterpreted as a theory �of diminishing
marginal welfare�. And our question of how to measure welfare would have an easy
answer: use VNM utility.

Finally, welfare measures have been studied extensively usingmeasurement theory,
under names such as �measuring strength-of-preference� or �measuring preference-
intensity�. See in particular Krantz et al. (1971), Shapley (1975), Basu (1982), and
for particularly general results Wakker (1988, 1989), Köbberling (2006) and Pivato
(2013). This literature pursues an interestingly di¤erent agenda, as the evidential
basis is not an order over alternatives, but an order R over alternative pairs, called
a �di¤erence order�, where (x; y)R(x0; y0) means �a change from x to y is at least
as good as a change from x0 to y0�. A welfare measure is then a representation
of this di¤erence order.2 Like a VNM utility function, such a welfare measure is
typically unique up to increasing a¢ ne transformation. But, unlike a VNM function
(standardly interpreted), it captures welfare intensity, not just welfare comparisons,
and it is derived from non-choice data, since the di¤erence order R is not revealed by
choice. By contrast, we aim to measure welfare based on purely ordinal observations,
where �ordinal�for us refers to a binary order over options, not a di¤erence order.

2 A partially unique welfare measure

We �x a set X of situations, in which the welfare of a given individual is to be
measured. Although we could work without any assumptions on X (as shown in the
appendix), the main text takes situations to be real numbers or more generally vectors
of real numbers. Typical real-valued situations are wealth levels, health levels, or
consumption index levels. Typical vector-valued situations are consumption bundles,
vectors of functionings (Sen 1985), or wealth-health-education triples. Technically,
the main text lets X be a non-empty open connected subset of Rk for some k � 1,
e.g., Rk, (0;1)k or (0; 1)k. Readers can focus on the base-line case that k = 1, in
which X is a non-empty open interval, e.g., R or (0;1) or (0; 1).

A welfare (or intrinsic utility) measure is a function W : X ! R, where W (x)
represents the person�s welfare at x, or, under alternative interpretations that we set
aside, the intensity of preference for x or the intrinsic value attached to x. Welfare
is not directly observable. Instead we observe ordinal comparisons, more precisely

2A function W �represents� a di¤erence order R over a set of alternatives if W (x) � W (y) �
W (x0)�W (y0) for all alternatives.
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comparisons of risky prospects, representing actions or policies with unknown out-
come. Technically, a prospect is a lottery over X with �nite support. Let P be the
set of these prospects. We have X � P, by identifying any situation x in X with
the riskless prospect where x occurs for sure. Our observable primitive is a binary
relation � on P, called an observed order, where �x � y�means that x is observably
at least as good as y for the person. Let � and � denote the corresponding strict
and asymmetric relations, where �x � y�and �x � y�mean that x is observably better
than resp. as good as y for the person.3 The source of observation might consist
in choice behaviour, reported self-assessments, third-party assessments, or perhaps
neurophysiological data.

The classic economic move would be to identify welfare with VNM utility. A VNM
utility representation of � is a function U : X ! R such that the prospects are ranked
by expected utility, i.e., for all prospects p; q 2 P, p � q if and only if Ep(U) � Eq(U).
If existent, such a representation is unique up to increasing a¢ ne transformation. We
will not use a VNM representation to measure welfare, for reasons discussed above.

We now introduce a �rst hypothesis about the welfare measure W in relation
to the observable �. To motivate it, recall the following classic condition, where a
certainty equivalent of a prospect p 2 P is a situation xp 2 X such that p � xp:

Constant Absolute Risk Aversion (CARA), de�ned for X � R: If all outcomes
of a prospect increase by a �xed amount, then the certainty equivalent increases by
this amount. Formally, for all � > 0 and all prospects p; q 2 P with a certainty
equivalent xp resp. xq, if p(x) = q(x+�) for all x 2 R, then xq = xp +�.4

CARA is widely empirically violated, in favour of decreasing rather than constant
absolute risk aversion (Chiappori and Paiella 2011). The fundamental problem is
arguably that, as soon as marginal welfare is diminishing, risk aversion relative to
outcomes tends to be decreasing, not constant. Indeed, if a risky wealth prospect
is translated upwards, then it moves into a region of higher wealth and thus lower
marginal welfare, so that the new prospect contains less risk in welfare, i.e., less risk in
a subjectively relevant sense. A 50-50 lottery between wealth $0 and wealth $1,000,000
contains huge risk in welfare: W (0) � W (1; 000; 000). But the translated 50-50
lottery between wealth $10.000.000 and $11.000.000 contains almost no risk in welfare:
W (10; 000; 000) � W (11; 000; 000). The �rst lottery should thus be equivalent to a
wealth level close to the worse outcome of $0, but the second lottery to a wealth level
close to the average outcome of $10; 500; 000, violating CARA.

Economists usually react to the empirical violations of CARA by replacing CARA
with some condition allowing for decreasing absolute risk aversion, for instance the
condition of hyperbolic absolute risk aversion (HARA). Our response is di¤erent.
The fundamental problem with CARA and its classic alternatives lies in the choice
of outcomes rather than welfare as the �currency� or �level of description� of risk

3For all p; q 2 P; p � q if and only if p � q and not q � p, and p � q if and only if p � q and
q � p.

4To make �p(x)�and �q(x+�)�well-de�ned even if x resp. x+� fall outside X, we identify any
lottery over X (� R) with its extension to R, which is zero within RnX. Equivalently to CARA, risk
premia are invariant to translating prospects by a �xed amount (assuming certainty equivalents are
unique). Here, the risk premium of a prospect p 2 P with a (unique) certainty equivalent is the gap
p� xp between p�s expectation p =

P
x2X p(x) and certainty equivalent xp.
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aversion. More naturally, risk aversion would be described as aversion to risk in
welfare, since the �true�risk comes from the possibility of di¤erently good outcomes,
not just di¤erent outcomes. We thus replace CARA with the following condition,
where an equivalent welfare of a prospect p 2 P is a welfare level wp =W (xp) that is
achieved in a situation xp 2 X such that xp � p:

Constant Intrinsic Risk Aversion (CIRA): If all welfare outcomes of a prospect
increase by a �xed amount, then the equivalent welfare increases by this amount.
Formally, for all � > 0 and all prospects p; q 2 P with an equivalent welfare wp resp.
wq, if p(W = w) = q(W = w +�) for all w 2 R, then wq = wp +�.5

CIRA requires a coherent or stable attitude to intrinsic risk, i.e., risk in resulting
welfare. For instance, if at a low welfare of 1 the agent likes a 50:50 gamble of gaining
2 units or losing 1 unit of welfare, then she still likes this gamble when starting at
a welfare of 50 or 100. CIRA provides an attractive explanation for the empirical
�nding of decreasing aversion to risk in outcomes, assuming diminishing marginal
welfare.

Why do we replace CARA with CIRA rather than with some classic assumption
of decreasing absolute risk aversion? For one, CIRA is no longer a condition on
preferences alone, but one on the relation between preferences � and welfare W .
This is precisely how it should be given out aim to make W observable. Classic
authors instead aim at representing and predicting choices, and for that reason avoid
conditions with extra parameters such as W . A second reason not to use a standard
alternative to CARA is that any given alternative (such as HARA) is only plausible
for a highly special and systematic shape of the welfare function W . The condition
will fail if W behaves unsystematically, for instance is strongly convex in some ares
and less convex or linear in other parts. But there are no general grounds to exclude
unsystematic behaviour of welfare. There is nothing irrational or surprising about an
unsystematic W , since W is not subject to rationality but partly to physiology. The
plausibility of CIRA does not hinge on any particular shape of the welfare function,
which could by arbitrarily �crazy�.

Still, CIRA is debatable, as discussed in Section 5, where we present a generalised
condition and theorem.

Before introducing further hypotheses, let us pause and see what CIRA implies
on its own. We shall restrict attention to well-behaved welfare measures and observed
orders �. We call a function W : X ! R well-behaved (relative to �) if it is

� compatible with riskless comparisons: for any situations x; y 2 X, W (x) �
W (y), x � y. That is, W is ordinally equivalent to the restriction of � to the
set X of riskless prospects.

� regular : W is smooth with nowhere zero derivative W 0.6

5Equivalently, intrinsic risk premia are invariant to translating prospects by a �xed amount (as-
suming a prospect�s equivalent welfare is unique). Here, the intrinsic risk premium of a prospect
p 2 P with a (unique) equivalent welfare wp is the gap Ep(W ) � wp between p�s expected and
equivalent welfare.

6�Smooth�means that W is di¤erentiable arbitrarily many often. In the muli-dimensional case
X � Rk with k � 2, W 0 is of course a vector ( d

dx1
W; :::; d

dxk
W ). It is �nowhere zero� if it at each

x 2 X it is not the zero vector, i.e., at least one partial derivative is non-zero.
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For instance, if X is a set of wealth levels X � R and if x > y ) x � y
(�more wealth is better�), then well-behaved welfare measures are smooth functions
W : X ! R with W 0 > 0.

The observed order � is well-behaved if it has a VNM representation U that is
regular (and thus automatically well-behaved7).

Proposition 1 Given a well-behaved observed order �, a well-behaved welfare meas-
ure W : X ! R satis�es CIRA if and only if

W = log(�U + 1)=�

for some VNM representation U of � and some � 2 R (called the �intrinsic risk
proneness�) such that �U + 1 > 0.

If � = 0, then �log(�U + 1)=��stands for U (= lim�!0 log(�U + 1)=�). The value
of � is not free: it must ensure that �U +1 > 0. For instance, � = 0 if supU =1 and
inf U = �1. Interpretively, � measures the attitude to intrinsic risk, that is, risk in
resulting welfare:

� if � > 0, the agent is strictly intrinsic risk prone, as VNM utility is convex in
welfare,

� if � < 0, the agent is intrinsic risk averse, as VNM utility is concave in welfare,

� if � = 0, the agent is intrinsic risk neutral, as VNM utility is linear in welfare.

In case of a weak inequality � � 0 resp. � � 0 the agent is weakly intrinsic risk
prone resp. averse. Although the exact value of � is usually underdetermined, the
sign of � �and hence the qualitative intrinsic risk attitude � is often determined.
Indeed, because � must satisfy �U + 1 > 0, the agent is necessarily

� intrinsic risk neutral if supU =1 and inf U = �1, as then � = 0,

� weakly intrinsic risk prone if supU =1 and inf U 6= �1, as then � � 0,

� weakly intrinsic risk averse if supU 6=1 and inf U = �1, as then � � 0.

The next section will formally justify our claims about risk attitude.

3 Explaining standard utility and risk attitude by in-
trinsic utility and intrinsic risk attitude

This section explores the structure of classic VNM utility and Arrow-Pratt risk atti-
tude, by decomposing both quantities into their two in�uences, welfare and intrinsic
risk attitude. These decompositions show that classic utility and classical risk at-
titude are hybrid constructs that re�ect an interplay of welfare and intrinsic risk
attitude. At this stage the decomposition will still be empirically underdetermined,

7Any VNM representation is compatible with riskless comparisons.
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because welfare is not yet uniquely identi�ed. Unique identi�cation will be achieved
later.

The classic economic theory of risk attitude after Arrow and Pratt measures the
risk attitude as follows, by assuming the one-dimensional case X � R:

De�nition 1 The classical (or Arrow-Pratt) risk proneness of a well-behaved ob-
served order �, for X � R, is the (well-de�ned8) function �AP = U 00

U 0 where U is any
VNM representation of �. If �AP is constant, it is identi�ed with its single value.

This measure is sometimes re-de�ned relative to a di¤erent quantity than the
outcome in X. We here re-de�ne it relative to an unobservable quantity, namely
welfare, in order to eliminate any distortion of the risk attitude by welfare- rather
than risk-related factors.

De�nition 2 The intrinsic risk proneness of a well-behaved observed order � w.r.t.
a well-behaved welfare measureW is the (well-de�ned9) function �W = d2U=dW 2

dU=dW where
U is any VNM representation of �. If �W is constant, it is identi�ed with its single
value.

We can now formally con�rm our earlier interpretation of the parameter ���of our
welfare measure:

Remark 1 In Proposition 1, the intrinsic risk proneness �W is constant and equals
the parameter � in the welfare measure W = log(�U + 1)=�.

VNM utility can be decomposed into its two determinants, welfare (intrinsic util-
ity) and intrinsic risk proneness, by simply solving the equation �W = log(�U +1)=��
for U and replacing � with �W :

Corollary 1 A well-behaved observed order � has a VNM utility representation U
that is determined by any given well-behaved welfare measure W satisfying CIRA and
by the constant intrinsic risk proneness �W via

U = (e�WW � 1)=�W .

If �W = 0, i.e., if � is intrinsic risk neutral, then �(e�WW � 1)=�W�stands for W
(= lim�!0 log(e�W � 1)=�).

Classical risk proneness �AP = U 00

U 0 also has a decomposition, which shows how it
combines risk-attitudinal and welfare-related aspects:

Proposition 2 The classical risk proneness �AP of a well-behaved observed order �,
for X � R, is determined by any given well-behaved welfare measure W and by the
intrinsic risk proneness �W via

�AP =
W 00

W 0 +W
0�W :

8As � is well-behaved, U
00

U0 is well-de�ned, i.e., U exists and is twice di¤erentiable with U 0 6= 0.
9Well-de�nedness of d2U=dW2

dU=dW
means that U is twice di¤erentiable in W with nowhere zero �rst

derivative in W , more precisely that U is writable as �(W ) for a (unique) function � : Rg(W ) ! R
that is twice di¤erentiable with nowhere zero �0 (in which case dU=dW stands for �0(W ) and d2U=dW 2

stands for �00(W )). Well-de�nedness follows from the well-behavedness of � and W (in fact, �0 is
everywhere positive, as can be seen via Lemma 1).
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Thus the classical risk proneness �AP = U 00

U 0 (the growth rate of marginal utility)
is the sum of

� a �welfare component�W 00

W 0 , the growth rate of marginal welfare, and

� a �risk component�W 0�W , the intrinsic risk proneness weighted by marginal
welfare. The weighting by marginal welfare is plausible, as it re�ects the in-
tuition that the attitude to welfare-risk (captured by �W ) matters only to the
extent that welfare varies (captured by W 0).

Proposition 2 does not require CIRA. Without CIRA, the intrinsic welfare risk
�W is not constant and VNM utility U is not given by (e�WW � 1)=�W , but U still
obeys the di¤erential equation �U

00

U 0 =
W 00

W 0 +W 0�W�. This di¤erential equation cannot
be solved analytically (except in special cases such as that of constant �W ), but it
shows that U is always determined by the two functions W and �W , with or without
CIRA. Hence the central conceptual point �that classic utility has two determinants,
welfare and intrinsic risk attitude �does not require CIRA.

4 Uniquely revealed welfare and intrinsic risk attitude

So far, the welfare measure W � and hence also the intrinsic risk proneness �W
and our decomposition of classic utility and classic risk proneness �are empirically
underdetermined: they are theoretic constructs that are only partially revealed by
the ordinal information �. More precisely, the welfare measure W in Proposition 1
has three remaining degrees of freedom: the intrinsic risk proneness � and the two
degrees of freedom implicit in the choice of VNM representation U . Surprisingly, full
uniqueness can be achieved by adding two simple hypotheses about welfare, namely
a range condition and a normalisation condition. We begin with the range condition:

Full-range: There exist arbitrarily good or bad situations. That is, for all welfare
levels w 2 R there is a situation x 2 X such that W (x) = w.

Full-range is a richness assumption on the set of situations considered: this set
should include situations of arbitrary quality, be these situations feasible or merely
theoretic. Note that VNM utility could still be bounded below or above. Impli-
citly, Full-range is also a condition on the scale on which welfare is measured: that
scale should include all real numbers as meaningful welfare levels. We return to
measurement-theoretic questions later.

To normalise the welfare measure, we consider a �xed reference situation �x 2 X,
representing for instance a �poverty point�. We call the welfare function W , or any
other function from X to R, normalised if at the reference point �x it takes the value
0 and has a derivative of size 1. The derivative of W , or marginal welfare, captures
how small changes of the situation a¤ect welfare.10

Normalisation: The welfare function W is normalised.
10 In the basic X � R, the size W 0 is the absolute value jW 0j, which normally equals W 0 as W 0 > 0,

i.e., as �more is better�. In the general case X � Rk (k � 1), the size of W 0 =
�
dW
dx1
; : : : ; dW

dxk

�
is the

length kW 0k.
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Normalisation requires measuring welfare on a scale that sets welfare to 0 and
marginal welfare to size 1 at the reference point. Measurement scales are conventions,
not substantive assumptions. The scale �xes the meaning of numbers, i.e., informally,
the mapping from numbers to meanings of numbers. One can always scale welfare in
accordance with Normalisation: any well-behaved welfare function satisfying CIRA
and Full-range can be transformed into one satisfying also Normalisation, by applying
an increasing a¢ ne transformation. Rescaling a welfare function changes absolute
welfare levels and welfare di¤erences. This scale-dependence does not make levels
and di¤erences meaningless: statements such as �welfare is 2�and �welfare rises by
3� have substantive meanings, but meanings that are relative to the chosen scale.
The axiom of Normalisation becomes less innocent when one engages in interpersonal
comparisons of welfare levels and/or di¤erences. This point will be discussed later,
when we generalise Normalisation.

We now state our central theorem. It states that there exists a unique, and there-
fore revealed, welfare measure satisfying our conditions. It is obtained by choosing U
and � in particular ways in the formula of Proposition 1. The result will assume that
the observed order � is broad-ranging. By this we mean that for any situations there
exist much better or much worse situations, more precisely for any situations x; y 2 X
with x � y there exists a situation z 2 X such that z 1

2
y 1
2
� x or y � z 1

2
x 1
2
. Note that

�z 1
2
y 1
2
� x or y � z 1

2
x 1
2
�means that z is so good that its 50-50 mixture with y beats

x or so bad that its 50-50 mixture with x loses to y. This condition holds under most
models of preferences under risk, for instances under all HARA preferences.

De�nition 3 Given an observed order �, if there is a unique well-behaved welfare
measure satisfying CIRA, Full-range and Normalisation, then it is called revealed by
� and denoted W�, and the intrinsic risk proneness w.r.t. W� is called revealed by
� and denoted ��.

Theorem 1 Any well-behaved and broad-ranging observed order � reveals a welfare
measure W� and a constant intrinsic risk proneness ��, given by

W� = log(��U + 1)=��

and

�� =

8<:
�1
supU (< 0) if supU 6=1 (intrinsic risk aversion)
�1
inf U (> 0) if inf 6= �1 (intrinsic risk proneness)
0 if supU =1 and inf U = �1 (intrinsic risk neutrality)

where U is the (unbounded) normalised VNM representation of �.

The utility function U could for instance be one of the many HARA utility func-
tions, which are used in applications and are indeed unbounded.

Like the classical measure of risk attitude �AP , our measure �� can be calculated
from the VNM representation U , but the calculation looks very di¤erent: while �AP
(= U 00

U 0 ) is derived from the curvature of U , �� is derived from extreme values of U .
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5 Application, discussion and generalisation

In this �nal section, we �rst show how our welfare measure can be combined with
empirical data to yield practical welfare assessments. We then turn to social welfare
�the starting point the Harsanyi-Sen debate. This will lead to a closer analysis of
our hypotheses, and to a generalisation of these hypotheses and the theorem.

Empirical application

It is natural to combine our expression for welfare with empirically supported VNM
utility functions. For example, let X = (0;1) and assume the agent is found em-
pirically to display decreasing absolute risk aversion, with a constant relative risk
aversion (�CRRA�) of � � 0. Many studies con�rm this picture, although the value
of � is highly context-dependent. The agent�s normalised utility function is then of
the well-known CRRA type:

U(x) =
�x

1� �

��x
�x

�1��
� 1
�
for all x 2 X.

If � = 1, this formula has the usual interpretation, as U(x) = �x log x�x (= lim�!1
�x
1��

��
x
�x

�1�� � 1�).
By Theorem 1, the agent has revealed intrinsic risk proneness given by11

�� =
1� �
�x

and revealed welfare given by12

W�(x) = �x log
x

�x
for all x 2 X:

Thus, the CRRA model leads to welfare of a simple logarithmic form, which does not
depend on any parameter, except the reference situation �x used for the normalisation.
Interestingly, the debate about the value of relative risk aversion � does not a¤ect the
measurement of welfare �it only a¤ects the intrinsic risk attitude �� =

1��
�x .

Other models than the CRRA model �for instance other HARA models �lead to
other concrete formulas for welfare and intrinsic risk proneness via Theorem 1. The
simple computations are left to readers.

Social welfare

Part of why measuring individual welfare matters is that it allows us to measure
social welfare, as a guide for policy making. Let us focus here on utilitarian social
welfare: social welfare is sum-total individual welfare. If John Harsanyi and followers
are right, then individual welfare is simply VNM utility, and one should maximise
sum-total VNM utility. If the critics such as Amartya Sen and John Weymark are
right, then individual welfare di¤ers from VNM utility, and one should not maximise

11Check this by distinguishing between the cases � > 1 (where supU <1), � < 1 (where inf U >
�1) and � = 1 (where supU =1 and inf U = �1).
12Because W (x) = log(�U(x)+1)

�
=

log
�
� 1
� ((

x
�x )

��x�1)+1
�

�
=

log(( x�x )
��x)

�
= �x log x

�x
.
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total utility, but total welfare. We adopt the latter view, and operationalise welfare
via Theorem 1.

Concretely, consider a society of individuals i = 1; :::; n (n � 2). Each individual
i satis�es the (observable) assumptions of Theorem 1, and so we can measure her
welfare by Wi = log(�iUi + 1)=�i, where Ui is her (normalised) VNM utility function
and �i is her revealed intrinsic risk proneness.

What goes wrong when maximising total utility
P
i Ui (or total weighted utility

13)
rather than total welfare

P
iWi? Under the plausible assumption that individuals

are intrinsic risk averse, each Wi is a convex transformation of Ui by Theorem 1,
and so each Ui is a concave transformation of Wi. Thus, maximising total utility
(or weighted utility) means maximising the total of concavely transformed welfare
levels �an approach that e¤ectively prioritises the worse-o¤ and is therefore known
as prioritarianism and regarded as a major alternative to utilitarianism [citations
TBA]. Ironically, this implies that John Harsanyi, o¢ cially a dedicated utilitarian, is
e¤ectively a prioritarian, and that his �utilitarian�theorem supports prioritarianism.14

How should the utilitarian principle of maximising total welfare handle risky pro-
spects in P rather than riskless situations in X? This is notoriously controversial.
Ex-post utilitarians maximise total expected ex-post welfare

P
i EpWi. Ex-ante util-

itarians instead maximise total ex-ante welfare
P
iWi(p), where Wi is the extension

of i�s welfare measure Wi to P such that a risky prospect gives the same welfare as
a certainty equivalent. Either version of utilitarianism respects exactly one of the
two requirements in Harsanyi�s �utilitarian�theorem: ex-post utilitarianism respects
social VNM rationality, while ex-ante utilitarianism respects Pareto. Utilitarians thus
face a hard choice when de�ning their principle under risk. Whichever approach is
taken, it can be operationalised using our welfare measure.

A generalisation

We now discuss potential criticisms of the three hypotheses, which will lead us to
generalise these hypotheses and the theorem. We begin with Full-range, followed by
Normalisation and CIRA.

Full-range discussed and generalised

By requiring that W ranges over the full set R, this hypothesis assumes not only that
there are arbitrarily good or bad situations in X, but also that all real numbers are
meaningful as welfare levels. The latter is a condition on the choice of measurement
scale: that scale must has range R. But one might want to measure welfare on a
di¤erent scale. For instance, if a scale with range R is transformed exponentionally,
by replacing (�relabelling�) any welfare level w 2 R with ew 2 (0;1), then the new
scale has range (0;1). To allow for such other measurement scales, we now introduce
an arbitrary (non-empty and open) interval D � R of meaningful welfare levels, e.g.,
D = R or D = (0;1) or D = (0; 1), and impose the following hypothesis (which
reduces to Full-range if D = R):
13Total weighted utility is

P
i �iUi for some weights �i > 0.

14By his theorem, a Pareto condition and social VNM rationality implies maximising the sum of
(suitably scaled) individual VNM utility functions.
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Full-rangeD: There are situations of arbitrary quality in D, i.e., fW (x) : x 2 Xg =
D.

Normalisation discussed and generalised

This condition sets welfare to 0 and marginal welfare size to 1, at a given reference
point �x, for instance a poverty level. More generally, one might �x numbers r 2 D
and s > 0, and impose the following hypothesis (which reduces to Normalisation if
r = 0 and s = 1):

Normalisationr;s: At the reference point �x, the welfare is r and the marginal welfare
size is s, i.e., W takes value r and has a derivative of size s.

What speaks for replacing Normalisation with Normalisationr;s? Normalisation
is questionable when one makes interpersonal comparisons of welfare, since Normal-
isation treats everyone as having the same welfare (and marginal welfare size) at �x.
Nothing is wrong with assuming Normalisation for for a given person �this just means
one must measure welfare on a scale such that (for instance) the welfare denoted by
�0�coincides with that experienced by the person at �x. But assuming Normalisation
for many persons simultaneously leads to questionable welfare comparisons at �x. By
contrast, Normalisationr;s works even in an interpersonal context, because r and s
can be person-dependent.

In some contexts, Normalisation is defensible. Why? First, recall that the status
and choice of normalisation is an old problem in welfare economics, although it is
usually raised for VNM utility rather than our welfare measures. The sensitivity
of interpersonal utility comparisons and total-utility-maximisation to the normalisa-
tion of individual utilities has already bothered Harsanyi, and has led to di¤erent
concrete proposals. Some favour a �0-1 normalisation�that sets utility to 0 resp. 1
at two reference outcomes (e.g., Isbell 1959, Segal 2000, Adler 2012, 2016). Others
favour a normalisation with a single reference outcome at which both utility and
marginal utility are �xed, say to 0 resp. 1 (e.g., Fleurbaey and Zuber 2021). Our
hypothesis Normalisation corresponds to the latter proposal, modulo the di¤erence
between VNM utility and welfare.

In general, there are at least three contexts in which Normalisation seems appro-
priate:

1. A¢ nely measurable welfare: Suppose we pursue a lower ambition by aiming to
measure welfare on an a¢ ne rather than absolute scale. The informational content
of W is then more limited: it lies between absolute and purely ordinal information.
Values and di¤erences of W are no longer signi�cant, but ratios of di¤erences are
signi�cant (just as for VNM utility15). Normalisation is then unproblematic, since
every welfare function is a¢ nely equivalent to one satisfying Normalisation. For a¢ ne
welfare, we lose the possibility of interpersonal comparisons of levels or di¤erences,

15VNM utility is also a¢ ne, but it measures something else than welfare.. So, ratios of di¤erences
of VNM utility are also unique, but they are hard to interpret. While �W (x)�W (y)

W (x0)�W (y0) = 1�means that

the change from x to y gives as much welfare as that from x0 to y0, �U(x)�U(y)
U(x0)�U(y0) = 1�does not say

something about welfare alone but about the interplay of welfare and risk attitude.
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and of the mentioned utilitarian social welfare function �
P
iWi�, which requires com-

parisons of di¤erences. But other welfare function remain possible, most notably the
Nash social welfare function.16

2. Contextualised welfare: Suppose the question is not what welfare individuals have
intrinsically, but what welfare they should be treated as having in a given context of
interpersonal comparisons, welfare aggregation, commodity allocation or other policy
choice. For such a �contextualised�welfare, Normalisation says that we should treat
individuals as having the same welfare (of 0) and the same marginal welfare size (of
1) at a given reference point �x. But why? Normalisation ensures that Pigou-Dalton
transfers increase social welfare

P
iWi. More precisely, if each Wi is increasing and

concave onXi � R, and satis�es Normalisation where the reference point is a common
�poverty point�� 2 R below/above which someone counts as poor/rich, then social
welfare

P
iWi increases by transferring resources from rich to poor persons.17 So,

Normalisation gives utilitarianism an unexpected egalitarian appeal. This egalitarian
argument for the normalisation Normalisation is introduced and developed axiomat-
ically in Fleurbaey and Zuber (2021), in a di¤erent version with VNM utility instead
of welfare.18 In their words, Normalisation leads to �fair utilitarianism�.

3. Locally objective welfare: One often distinguishes between �objective�and �sub-
jective�notions of welfare [citations TBA]. Objective welfare is given by �objective�
features such as wealth or consumption levels, and subjective welfare by �subjective�
features such as tastes or experienced happiness. Technically, someone�s objective
welfare depends only on the situation in X, while subjective welfare depends also on
her tastes or other subjective features. Of course, a notion of welfare can of hybrid
subjective-objective type, and the extent of objectivity can moreover vary between
di¤erent situations in X. Our analysis is open to objective as well as subjective
approaches. Now Normalisation can be regarded as re�ecting a local objectivity of
welfare: the welfare level becomes objective at the reference point �x. For instance,
a situation of high misery �x might give an objective (low) amount of welfare and
(high) amount of marginal welfare. This would justify Normalisation. But full-blown
objectivity at �x is not needed for Normalisation. Welfare could be of subjective type
and merely become �e¤ectively objective�at �x in the sense that the relevant subjective
features become the same for everyone at �x. So, welfare at �x is determined by subject-
ive but universal features. For instance, a situation of high misery �x could be disliked
by everyone to the same (large) extent, because (so the argument) di¤erences in taste
only arise once the most basic physical needs are covered. So to say, the external cir-
cumstances take over at �x by crowding out the subjective di¤erences. The plausibility
of such local (e¤ective) objectivity of welfare is certainly debatable. The plausibility
depends partly on what counts as a �situation�. Mere wealth levels are perhaps too
uninformative �situations�for local objectivity to emerge at a �poverty level�or other

16The latter is de�nable as
Q
i(Wi�Wi(�x))

1=n, and is restricted to situations in fx 2 X :Wi(x) � 0
for all ig. Bossert and Weymark (2004) review various social welfare functions and their underlying
informational requirements.
17That is, for all situations x; y 2 X and individuals j; k, if xj < yj < � < yk < xk, yj�xj = xk�yk,

and xl = yl for all other individuals k, then
P

iWi(x) <
P

iWi(y).
18While in their context concavity represents classical risk-aversion, in our context it represents

decreasing marginal welfare. In both cases, concavity is plausible.
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reference point. This might change if situations are detailed consumption vectors, or
even entire �lives�or Sen-type functioning vectors. The more information is packed
into situations, perhaps including �quasi-subjective�information, the less room is left
for subjectivity in welfare assessments. Stigler and Becker�s thesis �De gustibus non
est disputandis�and Sen�s programme of evaluating �ne-grained functioning vectors
can be regarded as two (very di¤erent) attempts to approach objectivity of evaluation
through a suitable level of description of the objects of evaluation (Stigler and Becker
1977, Sen 1985).

CIRA discussed and generalised

CIRA requires a constant aversion to intrinsic risk: if all possible welfare outcomes
of a risky prospect are shifted by the same amount, then the prospect�s equivalent
welfare is also shifted by this amount. We have suggested that CIRA is a plausible
explanation for why classic Arrow-Pratt absolute risk aversion is often found to be
decreasing: this empirical �nding follows from CIRA, assuming that marginal welfare
is diminishing.

Here is a possible defence of CIRA. For concreteness, let situations be wealth
levels, where X � R. The agent has some initial wealth. Wealth prospects describe
�nal-wealth probabilities. Assume that, �rstly, the agent is dynamically consistent
in that her ranking of �nal-wealth prospects would not change if her initial wealth
changed �rst; and ,secondly, the agent always perceives and ranks wealth prospects
in terms of gains or losses of welfare rather than �nal levels of welfare. The focus
on gains or losses rather than levels follows Kahnemann-Tversky�s prospect theory,
but in an (arguably more plausible) version based on welfare rather than monetary
wealth. These two assumptions can be shown to imply CIRA.19

Be this as it may, if one �nds CIRA too restrictive, one can replace it with a more
�exible hypothesis that can accommodate CIRA as well as various other interesting
welfare-based hypotheses, such as constant relative intrinsic risk, i.e., constant risk in
welfare ratios. While CIRA requires a constant aversion to risk in welfare simpliciter,
the generalisation requires a constant aversion to risk in some welfare-based quantity,

19More precisely, let �z be the order on P that the agent would hold if her initial wealth were
z (2 X); it equals � if z is her true initial wealth. Assumption 1 (�status quo independence� or
�dynamic consistency�): �z does not depend on z. Now, given an initial wealth level z, each �nal-
wealth lottery p 2 P yields a welfare-gain lottery 
pjz over R, where of course the probability of a
welfare gain of g 2 R equals the probability that �nal welfare exceeds initial welfare W (z) by g, i.e.,

pjz(g) = p(W (:)�W (z) = g). Assumption 2 (�welfare-gain-based preferences�): there is an order ��
over welfare-gain lotteries (i.e., lotteries on R with �nite support) such that p �z q , 
pjz �� 
qjz for
all �nal-wealth lotteries q; q 2 P and initial wealth levels z 2 X. Claim : Assumptions 1 and 2 imply
CIRA, supposing well-behavedness of � and W and Full-range. Proof sketch : Let �; p; wp; q; wq be
as in CIRA. Let p(W = w) = q(W = w + �) for all w 2 R. We show wq = wp + �. Let z0 be
the true initial wealth, and z the wealth level such that W (z) =W (z0) +� (z exists by Full-range).
Let xp; xq 2 X be certainty equivalents of p resp. q (they exist as � is well-behaved). Now p � xp,
i.e., p �z0 xp; so by Ass. 2 
pjz0 �

� W (xp) �W (z0) = wp �W (x0) (identifying the welfare gain
W (xp) � W (z0) = wp � W (x0) with a riskless welfare-gain lottery). Further, q � xq, hence by
Ass. 1 q �z y; so by Ass. 2 
qjz �� W (xq) �W (z) = wq �W (z). The welfare-gain lotteries 
pjz0
and 
qjz coincide, informally because q�s welfare prospect equals p�s shifted by � and z�s welfare
equals z0�s shifted by �. Since 
pjz0 �

� wp �W (z0), 
qjz �� wq �W (z), and 
pjz0 = 
qjz, we have
wp �W (z0) �� wq �W (z). It follows that wp �W (z0) = wq �W (z), because only identical welfare
gains are indi¤erent (as � and W are well-behaved). Thus wq � wp =W (z)�W (z0) = �. �
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i.e., some transformation of welfare. Formally, we replace CIRA with the following
condition that is de�ned relative to a welfare transformation � , which can be any
smooth function � from the mentioned interval D of meaningful welfare levels onto
R with � 0 > 0:

CIRA� : If all transformed welfare outcomes of a prospect rise by the same amount,
then the transformed equivalent welfare also rises by this amount. Formally, Rg(W ) �
D and, for all � > 0 and all prospects p; q 2 P with equivalent welfare wp resp. wq,
if p(�(W ) = t) = q(�(W ) = t+�) for all t 2 R then �(wq) = �(wp) + �.

CIRA� reduces to CIRA if �(w) = w for all w in D = R. If instead �(w) = logw
for all w in D = (0;1), then CIRA� requires a constant aversion to risk in welfare
ratios, i.e., a constant relative intrinsic risk aversion.

The theorem generalised

Even in their generalised form, our hypotheses lead to a unique welfare measure:

Theorem 2 Given a well-behaved and broad-ranging observed order �, there exists
a unique well-behaved welfare measure W : X ! R satisfying CIRA� , Full-rangeD
and Normalisationr;s (for given parameters �;D; r; s), given by

W = ��1(log(�s� 0(r)U + 1)=�+ �(r));

where U : X ! R is the (unbounded) normalised VNM representation of � and

� =

8><>:
�1

s� 0(r) supU < 0 if supU 6=1
�1

s� 0(r) inf U > 0 if inf 6= �1
0 if supU =1 and inf U = �1.

Theorem 1 is a special case of Theorem 2, obtained if D = R, r = 0, s = 1,
and � is the identity transformation, because the three hypotheses then reduce to the
original ones and the formula for W reduces to that in Theorem 1.20

As an application, assume D = (0;1) and � = log, so that CIRA� requires
constant relative intrinsic risk aversion. Then the formula for welfare reduces to
W = r(�sr U + 1)

1=�. So, welfare is now a geometric rather than logarithmic function
of VNM utility.

6 Conclusion

We have shown that plausible working hypotheses allow one to operationalise the dif-
�cult notion of individual welfare, and to disentangle an agent�s ordinary VNM utility
into two determinants, namely her welfare or intrinsic utility and her intrinsic risk
attitude. This makes welfare and intrinsic risk attitude indirectly observable quantit-
ies, and suggests an explanation of the empirical phenomenon of decreasing absolute
risk aversion in terms of an interplay of diminishing marginal welfare and constant

20 If � = 0 then the expression log(�s� 0(r)U + 1)=� in the formula should be read as s� 0(r)U
(= lim�!0 log(�s�

0(r)U + 1)=�)).
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intrinsic risk aversion. While we have suggested reasons for adopting our hypotheses
as working assumptions, the hypotheses remain debatable. We have presented gen-
eralised hypotheses, leading to a generalised formula for welfare.

Social welfare analysis can now use a more satisfactory observable measure of in-
dividual welfare than VNM utility. Social decisions often require not only adequate
measures of individual and social welfare in �xed situations, but also an adequate
handling of risk. Handling risk is far from obvious, as is highlighted by the di¤erence
between ex-ante and ex-post utilitarianism. In essence, one needs a social attitude to
intrinsic risk. One approach is to aggregate not only individual into social welfare,
but also individual into social intrinsic risk attitudes. Since both individual charac-
teristics �welfare and intrinsic risk attitude �are observably �contained�in individual
preferences under risk, this approach could be pursued within the standard framework
of preference aggregation under risk.

Appendix

The generalised setup with arbitrary alternatives

The main text took the set of alternatives X to be a (non-empty, open connected)
subset of Rk for some k � 1. All hypotheses and results continue to hold as such for
an arbitrary non-empty set X. This requires generalising the notions of �regular�and
�normalised�functions on X �the two notions that refer to derivatives, which do not
exist in general.

Regularity generalised. For a function W : X ! R, the main text took �regular�
to mean that W is smooth and has a nowhere zero derivative. In general, the set of
regular functions is de�ned as any given set F of functions f : X ! R such that,
for all f 2 F , the range Rg(f) = ff(x) : x 2 Xg is an open interval and, for every
strictly increasing � : Rg(f)! R, we have � � f 2 F if and only if � is smooth with
�0 > 0. This condition is met by the main text�s notion of �regular�, as shown below.

Normalisation generalised. In the main text, a function W : X ! R counts
as normalised if has value 0 and a derivative of size 1 at the reference point x. As
derivatives are unde�ned in general, we now de�ne a generalised notion of normalised
functions. It is given by a set N of functions f : X ! R, called the normalised
functions, satisfying minimal conditions: (i) for all f 2 N , f(�x) = 0; (ii) for all
f 2 N and all smooth transformations � : Rg(f) ! R with �(0) = 0, we have
� � f 2 N , �0(0) = 1; (iii) each regular function f 2 F is normalisable, i.e., has
an increasing a¢ ne transformation in N . Condition (ii) is our abstract analogue
of the condition that normalised functions have derivative size 1 and x. Intuitively,
normalised functions have the right value at x by (i), and have the same (abstract)
derivative size at x by (ii).21

In general, a function f : X ! R is normalisable if it has an increasing a¢ ne
transformation g in N , in which case g is the normalisation of f . Normalisations
21 In (ii), ��f intuitively has the same abstract derivative at x as f if and only if �0(0) = 1. Reason:

(� � f)0(x) = �0(f(x))f 0(x) = �0(0)f 0(x), assuming abstract derivatives behave like ordinary ones,
and (i) holds.
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exist at least for regular functions by (iii), and are always unique.22

The axiom of Normalisation (�W is normalised�) now makes sense in general.
To also make general sense of the axiom of Normalisationr;s (�W has value r and
a derivative of size s at x�), we must generalise the meaning of �size of derivative�.
While N does not induce a notion of derivative, it does induce a notion of derivative
size. How? Recall that all functions in N intuitively have derivative size 1 at x. We
de�ne the (abstract) derivative size of any normalisable function f : X ! R as the
number s in the representation f = sg+ r where g 2 N is the normalisation of f and
where s > 0 and r 2 R.23 This de�nition ensures that functions in N (like g) have
derivative size 1, and that the derivative size of f = sg + r equals s times that of g.

Our generalised setup includes the concrete setup of the main text as a special
case:

Lemma 1 If, as in the main text, X is a non-empty open connected subset of Rk
(k � 1) and the sets of regular and normalised functions are, respectively,

F = ff : X ! R : f is smooth, f 0(x) 6= 0 for all x 2 Xg
N = ff : X ! R : f(x) = 0, f 0(x) exists and is of size 1g

then the above conditions on F and on N are satis�ed.

Proof. Let X, F and N be as in the main text. We �rst establish the conditions
that F (part 1), and then those for N (part 2).

1. Fix an f 2 F . The range Rg(f) is an interval because continuous images
of connected sets are connected. This interval is open, as one easily deduces from
the fact that f has a non-zero derivative at all x 2 X. Now �x a strictly increasing
� : Rg(f)! R. By basic calculus, if � is smooth with �0 > 0, then � � f 2 F .

Henceforth we assume � � f 2 F and must show that � is smooth with �0 > 0.
Put g = � � f .

Claim 1 : If X � R (i.e., k = 1), then f�1 exists and is smooth.
Let X � R. As f 2 F , the derivative f 0 exists and is continuous and nowhere zero.

So f 0 is everywhere positive or everywhere negative. Thus f is strictly monotonic,
hence invertible. To show that h = f�1 is smooth, we show by induction that for all
n � 1 the nth derivative h(n) exists and is a ratio a

b of smooth functions a; b : X ! R
with b > 0. First consider n = 1. As f 0 > 0, the function, h0 = (f�1)0 exists and
equals 1

f 0(h) , a ratio of the claimed form. Now let n > 1 and assume that h
(n�1) exists

and is a ratio of the claimed form, say h(n�1) = a
b . By implication, h

(n) exists and
equals a

0b�b0a
b2

, which is again a ratio of the claimed form. Qed.
Claim 2 : If X � R (i.e., k = 1), then � is smooth with �0 > 0.

22Proof of uniqueness : Assume f; af + b 2 N , where a > 0 and b 2 R. We must show that a = 1
and b = 0. By (i), b = 0. Applying (ii) with � given by t 7! at, we have a = 1, since �0(0) = a and
� � f 2 N .
23 In this representation of f , all of g, s and r are unique: g is the (unique) normalisation of f , r

is given by r = f(x), and s is given by s = (f(x) � r)=g(x) for any x 2 X that is chosen such that
g(x) 6= 0 (an x with g(x) 6= 0 exists because otherwise g would be the zero function, although this
function is not in N by the condition (ii) applied with � taking always the value 0).
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Assume X � R. As g = � � f and f is (by Claim 1) invertible, we have � = g � h,
where h = f�1. The smoothness of � can be deduced from the fact that � = g �h and
that g and (by Claim 1) h are smooth. We skip the complete inductive argument.
In short, �0 exists and equals h0g0(h); so �00 exists and equals h00g0(h) + h0(g0(h))0 =
h00g0(h) + h02g00(h); and so on for higher derivatives of �.

To see why �0 > 0, �x a w 2 Rg(f). Pick an x 2 X such that f(x) = w. We
have g0(x) = �0(w)f 0(x) since g0(x) = (� � f)0(x) = �0(f(x))f 0(x) = �0(w)f 0(x). So,
as g0(x) and f 0(x) are non-zero and (by ordinal equivalence of f and g) of same sign,
we have �0(w) > 0. Qed.

Claim 3 : � is smooth with �0 > 0 (completing the proof).
Now we allow X to be multi-dimensional: X is any connected, open, and non-

empty subset of Rk where k � 1. Let t 2 Rg(f). We must show that, at t, � is
smooth with �0 > 0. Pick an x 2 f�1(t). Since f 0(x) 6= 0, we may pick a coordinate
j 2 f1; :::; kg such that df

dxj
(x) 6= 0. As f is smooth and f 0 is nowhere zero, there is an

open interval ~X containing xj such that, for all y 2 ~X, (x1; :::; xj�1; y; xj+1; :::; xk) 2
X and df

dxj
(x1; :::; xj�1; y; xj+1; :::; xk) 6= 0. Consider f as a function of the jth co-

ordinate in ~X. That is, de�ne the function ~f : ~X ! R given by y 7! ~f(y) =
f(x1; :::; xj�1; y; xj+1; :::; xn). Let ~� be the restriction of � to Rg( ~f) (� Rg(f)).
We now replace the primitives X, f , � and F with, respectively, ~X, ~f , ~� and
~F = fs : ~X ! R : s is smooth & s0(x) 6= 0 for all x 2 ~Xg. Note that we indeed have
~f 2 ~F (shown using that f 2 F) and ~�� ~f 2 ~F (shown using that ��f 2 F). As ~X is
one-dimensional, Claim 2 applies to these modi�ed primitives. So, ~� is smooth with
~�0 > 0. Thus, as � coincides with ~� on Rg( ~f), � is smooth with �0 > 0 on Rg( ~f),
and hence in particular at t.

2. We show all three conditions on N .

� Condition (i) holds by de�nition of N .

� To show (iii), �x an f 2 N and a smooth � : Rg(f) ! R with �(0) = 0. If
�0(0) = 1, then � � f 2 N , because � � f(x) = �(0) = 0, and because (� � f)0(x)
exists (as f 0(x) and �0 exist) and satis�es k(� � f)0(x)k = k�0(f(x))f 0(x)k =
j�0(f(x))j kf 0(x)k = 1 � 1 = 1: If instead �0(0) 6= 1, then � � f 62 N , because
k(� � f)0(x)k 6= 1.

� To show (iii), �x an f 2 F . The increasing a¢ ne transformation g = 1
kf 0(x)k(f�

f(x)) belongs to N , since g(x) = 0, and g0(x) exists (as g0(x) exists) with
kg0(x)k = 1

kf 0(x)k kf
0(x)k = 1. �

Proof of Proposition 1

All subsequent proofs will be stated such that they can be read either with the
generalised setup in mind or with the main text�s concrete setup in mind, depending
on the reader�s taste. Given a welfare measure W , let PW be the set of welfare
prospects, i.e., �nite-support lotteries over Rg(W ) rather than X. To each prospect
p 2 P corresponds a welfare prospect in PW , denoted by pW , where for each w 2W
we de�ne pW (w) as p(W = w), the probability that p results in an outcome with
welfare w.

We shall use the classic concept of risk aversion, brie�y de�ned in Section 2.
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Lemma 2 Assume � has a VNM representation U : X ! R and W : X ! R is
compatible with riskless comparisons. Then:

(a) For all prospects p; q 2 P, pW = qW ) p � q.

(b) In particular, we can de�ne an order �W on PW by letting a �W b if and only
if p � q for some (hence by (a) any) p; q 2 P with pW = a and qW = b.

(c) �W has a VNM representation, namely the (unique and strictly increasing)
function � : Rg(W )! R such that U = � �W .

(d) �W displays constant classical risk aversion if and only if CIRA holds.

(e) In particular, if CIRA holds, then � is linear or strictly concave or strictly
convex.

Proof. Let �, U and W be as assumed.
(a) Given the assumptions, the argument is (informally) that if pW = qW , then

p and q have the same �welfare distribution�, hence the same �utility distribution�(as
utility and welfare stand in one-to-one correspondence), and thus the same expected
utility, which implies that p � q. Qed

(b) The order �W is well-de�ned as the de�nition does not depend on the choice
of p and q by (a). Qed

(c) Let � be as speci�ed. For all p 2 P, we have EpU = EpW �, since

EpU =
X
x2X

p(x)U(x) =
X
w2R

X
x2X:W (x)=w

p(x)U(x)

=
X
w2R

0@ X
x2X:W (x)=w

p(x)

1A�(w)
=
X
w2R

pW (w)�(w) = EpW �:

The claim now follows from the observation that, for any pW and qW in PW (where
p; q 2 P), pW �W qW is equivalent to p � q, hence to EpU � EqU , which reduces to
EpW � � EqW �. Qed.

(d) First assume �W displays constant classical risk aversion. To show CIRA,
consider any � > 0, any p; p0 2 P, and any �; �0 2 X, such that p � �, p0 � �0, and
p(W = w) = p0(W = w + �) for each w 2 R. Then pW �W �W , p0W �W �0W ,
and pW (w) = p0W (w + �). So, as �W displays constant classical risk aversion,
�0W = �W +�, i.e., W (�0) =W (�) + �. This establishes CIRA.

Conversely, assume CIRA. Consider any � > 0, a; a0 2 PW , and t; t0 2 Rg(W )
such that a �W t, a0 �W t0, and a(w) = a0(w + �) for each w 2 R (where a(w)
stands for 0 if w 62 Rg(W ) and a0(w + �) stands for 0 if w + � 62 Rg(W )). Pick
p; p0 2 P and �; �0 2 X such that pW = a, p0W = a0, W (�) = t and W (�0) = t0. Then
p � �, p0 � �0, and p(W = w) = p0(W = w +�) for each w 2 Rg(W ). So, by CIRA,
W (�0) = W (�) + �, i.e., t0 = t+�. This shows that �W displays constant classical
risk aversion. Qed
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(e) Assume CIRA. The property established in (d) can be shown to imply that
the risk premium has the same sign for all non-certain prospects, i.e., is always zero
or always positive or always negative. This easily implies that U is linear or strictly
concave or strictly convex, respectively. �

The next lemma is a well-known building block of the classical theory of risk
aversion after Arrow (1965) and Pratt (1964), and will later be applied to the order
�W in Lemma 2.

Lemma 3 If an order on the set of �nite-support lotteries over a given real interval
has a smooth VNM representation with everywhere positive derivative, then it displays
constant classical risk aversion if and only if it has a VNM representation given by
w 7! 1

�(e
�w � 1) for some � 2 R.

If � = 0, then �1�(e
�w�1)�of course stands for w (= lim�!0 1�(e

�w�1)). Although
this lemma is well-known, we sketch the argument for completeness.

Proof. Consider an order �� on the set P� of �nite-support lotteries over a given
interval I � R, with a smooth VNM representation �. For each � 2 R let �� : I ! R
be the function w 7! 1

�(e
�w � 1). The proof goes in two steps.

Claim 1 : �� displays constant classical risk aversion if and only if there exists a
� 2 R such that � solves the di¤erential equation �f 00 = �f 0�on I, the solutions of
which are the a¢ ne transformations of ��.

By the fundamental result of Arrow (1965) and Pratt (1964), �� displays constant
classical risk aversion if and only if the function �00=�0 is constant, which implies the
claimed �if and only if�. The set of solutions to the di¤erential equation �f 00 = �f 0�
(on I) is well-known:

� If � 6= 0, then a solution is any a¢ ne transformation of the function w 7! e�w.

� If � = 0, so that �f 00 = �f 0�reduces to �f 00 = 0�, then a solution is any a¢ ne
transformation of the function w 7! w.

So, whatever the value of �, a solution of �f 00 = �f 0�is any a¢ ne transformation of
��. Qed.

Claim 2 : If �0 is everywhere positive, then �� displays constant classical risk
aversion if and only if there exists a � 2 R such that �� VNM represents ��.

Assume �0 is everywhere positive. Then � and �� are two increasing functions,
hence are increasing transformations of one another. By Claim 1, �� displays constant
classical risk aversion if and only if there exists a � 2 R such that � is a (now
increasing) a¢ ne transformation of ��, or equivalently such that �� is an (increasing)
a¢ ne transformation of �, or yet equivalently such that �� (like �) VNM represents
��. �

Proof of Proposition 1. Consider any well-behaved � and W .
1. In this part we assume that W = log(�U +1)=� for a VNM representation U of

� and a � 2 R such that �U +1 > 0, and we prove that W satis�es CIRA. Note �rst
that U = (e�W � 1)=�. Thus, U = �� �W , where �� is the function on Rg(W ) given
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by w 7! (e�w � 1)=�. Let �W be the order over welfare prospects de�ned in Lemma
2. �� is a VNM representation of �W by Lemma 2(c). So �W displays constant
classical risk aversion by Lemma 3. This implies CIRA by Lemma 2(d). Qed

2. Conversely, assume CIRA. We show the existence of a VNM representation U
of � and a � 2 R such that �U + 1 > 0 and W = log(�U + 1)=�. De�ne �W and the
transformations �� : Rg(W ) ! R (� 2 R) as in part 1. Being well-behaved, � has
a regular VNM representation ~U : X ! R. As ~U and W are regular and ordinally
equivalent, ~U = � �W for a smooth transformation � : Rg(W ) ! R with �0 > 0.
� VNM represents �W by Lemma 2(c). CIRA implies that �W displays constant
classical risk aversion, by Lemma 2(d). Hence, by Lemma 3, there exists a � 2 R
such that �� VNM represents �W . As �� and � both VNM represent �W , �� is an
increasing a¢ ne transformation of �. So, the function U := �� �W is an increasing
a¢ ne transformation of ~U (= � �W ). Hence, not only ~U but also U VNM represents
�. Note that �U + 1 > 0, as �U + 1 = �(�� �W ) + 1 > �(�1=�) + 1 = 0. Finally,
W = ��1� � U = log(�U + 1)=�. �

Proof of results in Section 3

Proof of Remark 1. As in Proposition 1, let the (well-behaved) functions U and W
on X be related by W = log(�U + 1)=�. So, U = (e�W � 1)=�, and thus U = �(W )
where � : Rg(W )! R maps any w 2 Rg(W ) to �(w) = (e�w� 1)=� (which, as usual,
reduces to w if � = 0). By simple computation, the intrinsic risk proneness �W is
given by

�W =
d2U=dW 2

dU=dW
=
�00(W )

�0(W )
=
�2e�W =�

�e�W =�
= �: �

Proof of Proposition 2. Assume X � R. Let � and W be well-behaved. As � is
well-behaved, it has a regular VNM representation U . As W and U are ordinally
equivalent and regular, the (unique) function � : Rg(W ) ! R such that U = �(W )
is smooth with �0 > 0. Di¤erentiation yields

U 0 = �0(W )W 0 and U 00 = �00(W )W 02 + �0(W )W 00:

Hence the classical risk proneness �AP = U 00

U 0 is given by

�AP =
�0(W )W 00 + �00(W )W 02

�0(W )W 0 =
W 00

W 0 +
�00(W )

�0(W )
W 0 =

W 00

W 0 + �WW
0: �

Proof of Theorem 1

The proof of Theorem 1 will use Proposition as well as two further lemmas.

Lemma 4 If � has a VNM representation U , then � is broad-ranging if and only if
U is unbounded, i.e., supU =1 or inf U = �1.

Proof. Assume � has a VNM representation U .
1. First let U be unbounded. Without loss of generality, suppose supU =1 (an

analogous proof works if instead inf U = �1). To prove that � is broad-ranging,
consider situations x; y 2 X with x � y. So U(x) � U(y). As supU = 1, there
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is a situation z 2 X such that U(z) � U(x) > U(x) � U(y). It easily follows that
1
2U(z) +

1
2U(y) > U(x). So, as U VNM represents �, z 1

2
y 1
2
� x.

2. Conversely, let � be broad-ranging. Then in particular not all situations in
X are equally good. Pick any x � y in X, and write � = U(x) � U(y) (> 0). For
j = 0; 1; ::: de�ne situations xj and yj with U(xj) � U(yj) � 2j� by the following
reclusion. First, �x = x and y0 = y. Clearly U(�x) � U(y0) � 20� (in fact, ���could
be replaced by �=�). Now consider j � 0 and suppose xj and yj are de�ned, with
U(xj)�U(yj) � 2j�. As � is broad-ranging, there exists a g 2 X such that g 1

2
y 1
2
� x

(�case 1�) or there exists a b 2 X such that y � b 1
2
x 1
2
(�case 2�).

First assume case 1. Put xj+1 = g and yj+1 = yj . So, 12U(xj+1) +
1
2U(yj+1) >

U(xj), and thus

1

2
U(xj+1)�

1

2
U(yj+1) > U(xj)� U(yj+1) = U(xj)� U(yj) � 2j�:

Hence U(xj+1)� U(yj+1) � 2j+1�, as desired.
Now assume case 2 without case 1. Put xj+1 = xj and yj+1 = b. So, 12U(xj+1) +

1
2U(yj+1) < U(yj), and thus

1

2
U(yj+1)�

1

2
U(xj+1) < U(yj)� U(xj+1) = U(yj)� U(xj) � 2j�:

Hence again U(xj+1)� U(yj+1) � 2j+1�, as desired.
As j ! 1, we have 2j� ! 1, and so U(xj) � U(yj) ! 1. So, supU = 1 or

inf U = �1. �

Lemma 5 For any well-behaved observed order � and any welfare measure of the
form W = log(�U + 1)=� for a VNM representation U of � and a � 2 R such that
�U + 1 > 0,

(a) W satis�es Full-range if and only if inf U < 0 < supU and

� =

8<:
�1
supU (< 0) if supU 6=1
�1
inf U (> 0) if inf U 6= �1
0 if supU =1 and inf U = �1;

assuming � is broad-ranging (so that U is unbounded by Lemma 4),

(b) W satis�es Normalisation if and only if U is normalised.

Proof. Let �, U and � be as speci�ed.
(a) Assume � is broad-ranging. So U is unbounded (Lemma 4). Since U is

regular, Rg(U) is an open interval. Thus Rg(U) = (a; b) where we put a = inf U and
b = supU . Note that �1 � a < b � 1, where at most one of a and b is �nite.

If it is not the case that a < 0 < b, then 0 62 Rg(U), and thus 0 62 Rg(W );
hence both sides of the claimed equivalence are violated, and thus the equivalence
holds. Having set aside this trivial case, let us assume henceforth that a < 0 < b.
As Rg(U) = (a; b) and W = log(�U + 1)=�, Rg(W ) is the open interval with the
boundaries

infW = lim
u#a
log(�u+ 1)=� and supW = lim

u"b
log(�u+ 1)=�:
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This uses that log(�u+1)=� is a smooth and strictly increasing function of u, whether
� is negative, positive, or zero (if � = 0 then log(�u + 1)=� stands for u, as usual).
Since Full-range means that Rg(W ) = R, we have

Full-range holds , limu#a log(�u+ 1)=� = �1 and limu"b log(�u+ 1)=� =1:

Thus, if � is positive, the claimed equivalence between Full-range and � = � 1
a holds

because

Full-range holds , limu#a log(�u+ 1) = �1 and limu"b log(�u+ 1) =1
, �a+ 1 = 0 and �b+ 1 =1
, � = � 1

a and b =1
, � = � 1

a ;

where we could drop �and b = 1� since this is implied by a�s �niteness and U�s
unboundedness. Analogously, if � is negative, then the claimed equivalence between
Full-range and � = �1

b holds because

Full-range holds , limu#a log(�u+ 1) =1 and limu"b log(�u+ 1) = �1
, �a+ 1 =1 and �b+ 1 = 0
, a = �1 and � = �1

b
, � = �1

b .

Finally, if � = 0, then the claimed equivalence between Full-range and � = 0 holds
because the right side (� = 0) holds by assumption and the left side (Full-range) holds
since W = U and thus Rg(W ) = Rg(U) = R.

(b) We must show that W is normalised if only if U is normalised. This follows
from two observations. First, as W = 1

� log(�U + 1), W takes the value 0 exactly
where U takes the value 0. Second,

W 0 =
1

�
log0(�U + 1)(�U + 1)0 =

1

�(�U + 1)
�U 0 =

1

�U + 1
U 0,

and so, wherever W (or equivalently U) takes the value 0, W 0 and U 0 coincide. �

Proof of Theorem 1. Let � be well-behaved and broad-ranging. As � is well-behaved,
it is VNM representable by a regular function. Note that any regular function has
a normalised increasing a¢ ne transformation. So, there is a regular and normalised
VNM representation U of �. It is unbounded by Lemma 4. Note that inf U <
0 < supU , because Rg(U) is an open interval (by regularity) and contains 0 (by
normalisation). So we may de�ne

� =

8<:
�1
supU (< 0) if supU 6=1
�1
inf U (> 0) if inf U 6= �1
0 if supU =1 and inf U = �1:

Further, we de�ne the welfare measureW = log(�U+1)=�. W is well-de�ned because
�U +1 > 0, by the de�nition of � and the fact that (since Rg(U) is open) U is strictly
larger than inf U and smaller than supU .

We now show that W is the only well-behaved welfare measure satisfying CIRA,
Full-range and Normalisation. This will complete the proof, as it implies not only
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that there is a revealed measure, namely W� =W , but also that (by Remark 1) the
revealed intrinsic risk proneness �� is the constant � de�ned above.

Firstly, W is well-behaved as it is a smooth and positively di¤erentiable trans-
formation of the well-behaved function U . It also satis�es the three hypotheses: it
satis�es CIRA by Proposition 1, and satis�es Full-range and Normalisation by Lemma
5.

Now let ~W be any well-behaved welfare measure satisfying the hypotheses. We
prove that ~W =W . By Proposition 1, CIRA implies that

~W = log(~� ~U + 1)=~�

for some VNM representation ~U of � and some ~� 2 R such that ~� ~U + 1 > 0. By
Lemma 5 (applied with ~U and ~� rather than U and �), Normalisation implies that
~U = U , and Full-range implies that ~� = � given that � is broad-ranging. So ~W =W .
�

Proof of Theorem 2 via Theorem 1

The following lemma will allow us to reduce Theorem 2 to Theorem 1.

Lemma 6 For any observed order �, any instance of the generalised conditions Full-
rangeD, Normalisationr;s and CIRA� , any welfare measure W : X ! R such that
Rg(W ) � D (so that � �W is de�ned), and any increasing a¢ ne transformation W �

of � �W ,

(a) W is well-behaved if and only if W � is well-behaved,

(b) W satis�es Full-rangeD if and only if W � satis�es Full-range,

(c) W satis�es Normalisationr;s if and only ifW � satis�es Normalisation, assuming
W � = (� �W � �(r))=(s� 0(r)),

(d) W satis�es CIRA� if and only if W satis�es CIRA.

Proof. Consider D, r, s, � ,W and W � as speci�ed. Let � : D ! R be the
increasing a¢ ne transformation of � such that W � = � �W . Since � is a smooth and
positively di¤erentiable function from D onto R, so is �. By basic analysis, it follows
that ��1 exists (so that W = ��1 �W �) and that ��1 is a smooth and positively
di¤erentiable function from R onto D.

(a) Recall that well-behavedness is the conjunction of compatibility with riskless
comparisons and regularity. So the claim follows from two facts:

� W � is compatible with riskless comparisons if and only if W is so, since W and
W � are ordinally equivalent.

� W � is regular if and only ifW is regular, sinceW andW � are smooth positively
di¤erentiable transformations of one another.
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(b) We have to show that Rg(W ) = D , Rg(W �) = R. Note that Rg(W �) =
R , Rg(� �W ) = R, as W � is an increasing a¢ ne transformation of � �W . So it
su¢ ces to show that Rg(W ) = D , Rg(� �W ) = R. This equivalence holds because,
�rstly, if Rg(W ) = D then Rg(� �W ) = �(Rg(W )) = �(D) = R, and secondly, if
Rg(W ) 6= D then Rg(� �W ) = �(Rg(W )) 6= �(D) = R.

(c) Suppose W � = (� �W � �(r))=(s� 0(r)). In other words, W � = � �W where
� = (�(�) � �(r))=(s� 0(r)). As a preliminary, consider the smooth transformation ~�
de�ned on ~D = f(d � r)=s : d 2 Dg by ~�(t) = �(st + r) for all t 2 ~D. We have
~�(0) = 0 and ~�0(0) = 1, since ~�(0) = �(r) = 0 and ~�0(t) = s� 0(ts+r)

s� 0(r) for all t 2 ~D.
First, assume W satis�es Normalisationr;s. Then W (x) = r and W has a deriv-

ative size of s at x. Thus W = s ~W + r for some normalised function ~W . Note that
~W = (W � r)=s and that Rg( ~W ) = f(t� r)=s : t 2 Dg = ~D. We have ~� � ~W = W �,
since

~� � ~W = ~� � [(W � r)=s)] = � �W =W �:

Since ~W is normalised and since W � = ~� � ~W where ~� is smooth with ~�(0) = 0 and
~�0(0) = 1, W � is also normalised.
Conversely, assumeW � is normalised. Since � is invertible, so is ~� (= �(s��+r)).

Further, as ~� is the composition of � with the mapping t 7! st + r, ��1 is the
composition of the latter mapping with ~��1, i.e., ��1 = s~��1(�) + r. We thus have
W = ��1(W �) = s~��1(W �) + r. To show that W satis�es Normalisationr;s, it is
thus su¢ cient to show that ~��1(W �) is normalised. This follows from the fact that
W � is normalised and the fact that ~��1 is smooth with ~��1 > 0, (~��1)(0) = 0 and
(~��1)0(0) = 1. The second fact holds because ~� is smooth with ~�0 > 0, ~�(0) = 0 and
~�0(0) = 1.
(d) By assumption, there are a > 0 and b 2 R such that W � = a�(W ) + b, or

equivalently W = ��1((W � � b)=a).
First let W satisfy CIRA� . To show that W � satis�es CIRA, �x a � > 0 and

prospects p; q 2 P with equivalent welfare w.r.t. W � denoted w�p resp. w
�
q , and assume

p(W � = w) = q(W � = w + �) for all w 2 R. We must show that w�q = w�p + �.
Since W � = a�(W ) + b, the prospects p and q have equivalent welfare wp resp. wq
w.r.t. W satisfying w�p = a�(wp) + b resp. w

�
q = a�(wq) + b. For all t 2 R, we have

p(�(W ) = t) = q(�(W ) = t+�=a), because

p(�(W ) = t) = p(a�(W ) + b = at+ b) = p(W � = at+ b)

q(�(W ) = t+�=a) = q(a�(W ) + b = at+ b+�) = q(W � = at+ b+�)

and because p(W � = w) = q(W � = w + �) for all w 2 R. We can now apply
CIRA� to W and to �=a (rather than �). This yields �(wq) = �(wp) + �=a. Thus
a�(wq) + b = a�(wp) + b+�, i.e., w�q = w

�
p +�.

Conversely, suppose W � satis�es CIRA. To show that W satis�es CIRA� , note
�rst that Rg(W ) � D by assumption. Next, consider a � > 0 and prospects p; q 2 P
with equivalent welfare wp resp. wq, and assume p(�(W ) = t) = q(�(W ) = t + �)
for all t 2 R. We prove that �(wq) = �(wp) + �. As W � = a�(W ) + b, p and q have
equivalent welfare w.r.t. W � given by w�p = a�(wp) + b resp. w

�
q = a�(wq) + b. For
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all w 2 R, we have p(W � = w) = q(W � = w + a�), because

p(W � = w) = p(a�(W ) + b = w) = p (�(W ) = (w � b)=a)
q(W � = w + a�) = q(a�(W ) + b = w + a�) = q (�(W ) = (w � b)=a+�)

and because p(�(W ) = t) = q(�(W ) = t +�) for all t 2 R. So, by CIRA applied to
W � and to a� (rather than �), w�q = w

�
p + a�, i.e., a�(wq) + b = a�(wp) + b+ a�.

Thus, �(wq) = �(wp) + �. �

Proof of Theorem 2. Assume � is well-behaved and broad-ranging, and con-
sider the generalised hypotheses CIRA� , Full-rangeD and Normalisationr;s for given
D; �; r; s.

1. In this part, we �x a well-behaved welfare measure W : X ! R satisfying the
three hypotheses, and we prove that W has the speci�ed form. By Lemma 6, the
transformed welfare measure

W � = (� �W � �(r))=(s� 0(r)) (1)

is well-behaved and satis�es the original hypotheses CIRA, Full-range and Normal-
isation. So, by Theorem 1, W � = log(��U + 1)=��, where U is the (unbounded)
normalised VNM representation of �, and �� is the coe¢ cient de�ned in Theorem 1.
De�ning � as in Theorem 2, and noting that �� = �s� 0(r), we obtain

W � = log(�s� 0(r)U + 1)=(�s� 0(r)): (2)

By (1) and (2),

(� �W � �(r))=(s� 0(r)) = log(�s� 0(r)U + 1)=(�s� 0(r)):

Solving this equation for W yields W = ��1(log(�s� 0(r)U +1)=�+ �(r)), as claimed.
Qed.

2. In this part, we show that the welfare measure

W = ��1(log(�s� 0(r)U + 1)=�+ �(r)); (3)

with U and � de�ned as in Theorem 2, is well-behaved and satis�es CIRA� , Full-
rangeD and Normalisationr;s. By Lemma 6, this is the case if the transformed welfare
measure W � de�ned by (1) is well-behaved and satis�es CIRA, Full-range and Nor-
malisation. By plugging the expression de�ning W into that de�ning W �, and then
simplifying, one obtains

W � = log(�s� 0(r)U + 1)=(�s� 0(r)) = log(��U + 1)=��;

where �� is de�ned like in Theorem 1, or equivalently �� = �s� 0(r). So, by Theorem
1, W � is indeed well-behaved and satis�es CIRA, Full-range and Normalisation. �
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