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Abstract

Assuming that votes are independent, the epistemically optimal procedure in a
binary collective choice problem is known to be a weighted supermajority rule with
weights given by personal log-likelihood-ratios. It is shown here that an analogous
result holds in a much more general model. Firstly, the result follows from a more
basic principle than expected-utility maximisation, namely from an axiom ("Epis-
temic Monotonicity") which requires neither utilities nor prior probabilities of the
‘correctness’ of alternatives. Secondly, a person’s input need not be a vote for an
alternative, it may be any type of input, for instance a subjective degree of belief
or probability of the correctness of one of the alternatives. The case of a profile of
subjective degrees of belief is particularly appealing, since here no parameters such
as competence parameters need to be known.

1 Introduction and overview

Throughout, we consider a group of n persons, labelled i = 1, ..., n, which faces
a binary choice problem. One option (it does not matter which) is called 0, the
other one 1. By assumption, exactly one of these options is the ‘correct’ alternative;
everybody would prefer making a correct choice, but there is uncertainty as to which
is the correct alternative.2

Let us take a purely epistemic approach by caring only of the correctness of the
decision regardless of the fairness of the decision procedure.3 Within this paradigm
it is intuitively clear that more competent persons should have more say. It is known

1I wish to express my thanks to various people, including Luc Bovens, Bernhard Grofman, James
Hawthorne, Christian List and Josh Snyder. I also thank the Alexander von Humboldt Foundation,
the Federal Ministry of Education and Research, and the Program for the Investment in the Future
(ZIP) of the German Government, for supporting this research. Address for correspondence: Center
For Junior Research Fellows, University of Konstanz, 78457 Konstanz (Germany). Telephone: ++49
(0)7531 88-4733. Email: franz.dietrich@uni-konstanz.de.

2This assumption may, for instance, be justified if the choice is between convicting or acquitting
a defendant, since conviction is correct if and only if the defendant is guilty. In other situations, this
assumption is more critical, such as in choices between two (political) candidates.

3The epistemic approach assumes a procedure-independent standard of correctness of decisions
and takes the only aim to be a decision in favour of that correct alternative. By contrast, the
procedural approach aims at reaching decisions that are a fair or democratic reflection of the profile.
For a discussion of epistemic and procedural justifications for procedures, see for instance Cohen
(1986), Dahl (1979), Coleman and Ferejohn (1986), Estlund (1993, 1997) and List and Goodin
(2001).



(see the below literature review) that this intuition can be turned into a precise
statement that specifies ‘how much’ more say should be given to more competent
persons: Under independent voting, expected-utility maximisation requires that

the procedure decides according to a threshold for
nX
i=1

log
P (xi|H1)

P (xi|H0)
(1)

(see Definition 1 for "deciding according to a threshold"). Here, H0 (H1) is the
hypothesis that alternative 0 (1) is correct, and P (xi|H0) (P (xi|H1)) is the probability
that person i votes xi given H0 (H1). Under this rule, voting power increases with
competence on a specific logarithmic scale. Indeed, the more competent a person i
is, the more the likelihood-ratio P (xi|H1)

P (xi|H0)
differs from 1, and hence the larger the term

log P (xi|H1)
P (xi|H0)

becomes in absolute value.4 An extreme case is that person 3 (say) is

so much more competent than all others that the term log P (x3|H1)
P (x3|H0)

dominates the
entire sum and the procedure reduces to an expert rule with person 3 as the expert.
The other extreme is that the persons are nearly identically competent, so that the
terms log P (x3|H1)

P (x3|H0)
have very similar magnitudes and the procedure reduces to a (non-

weighted) supermajority rule.

Before mentioning the literature, let me give a brief overview of the two con-
tributions of this paper, namely the criterion of Epistemic Monotonicity and the
generalisation to arbitrary types of personal inputs.

Epistemic Monotonicity. This paper has a slightly less economical and more
social-choice-theoretic focus than some of the below-cited literature. Our main ob-
jective is not to derive the single optimal procedure (except in Section 10), rather
we formulate a basic principle of epistemic social choice and derive the class of those
procedures satisfying it. Our principle replaces the heavier concept of expected-utility
maximisation and might be acceptable for groups who reject the latter or cannot agree
on the values of utilities and/or prior probabilities of the correctness of alternatives.
Although quite elementary, our principle will take us nearly as far as expected-utility
maximisation.

To motivate Epistemic Monotonicity, notice that in (1) the individual log-likelihood-
ratios depend neither on prior probabilities (of H0 and H1) nor on any utility values
— prior probabilities and utilities become relevant only when specifying the thresh-
old to which the sum is to be compared. This suggests that a more basic principle
than expected-utility maximisation underlies the fact that (under independence) pro-
cedures should have the form (1), where this basic principle should not depend on
particular utilities or prior probabilities.

A first remark is that (1) also follows if, instead of maximising the expected utility
one maximises the probability of a correct decision, which does not require utilities.
However, this still involves prior probabilities, and moreover it makes an implicit

4Assume for instance that person i is highly competent. Then a vote of xi = 0 is highly probable
given H0 and little probable given H1, implying that

P (xi|H1)
P (xi|H0)

is close zero, and hence log P (xi|H1)
P (xi|H0)

is ‘close’ −∞. On the other hand, a vote of xi = 1 is highly probable given H1 and little probable
given H0, implying that

P (xi|H1)
P (xi|H0)

is ‘close’ ∞, and hence log P (xi|H1)
P (xi|H0)

is also ‘close’ ∞.

2



assumption about utilities since it is equivalent to expected-utility maximisation in
the special case in which the utilities satisfy a quite particular relation.

So, what then is the basic principle entailing (1) without making (explicit or
implicit) assumptions about priors or utilities? As we will show, it is Epistemic
Monotonicity, which states roughly that if a profile that yields decision y ∈ {0, 1} is
modified so as to make y more probably correct, then the modified profile should still
yield decision y. More precisely, Epistemic Monotonicity requires that,

for any two profiles x , x0, if P (H1|x) ≤ P (H1|x0) then f(x) ≤ f(x0).

This does not involve utilities, and despite the appearance not even prior probabilities,
as will be shown. The generality of this principle comes at the expense of a unique
characterisation of the procedure: The threshold for the weighted sum does not follow
from this axiom.

Arbitrary inputs. The other contribution of this paper is a full generalisation of
the type of profile submitted: Epistemic Monotonicity implies (1) regardless of the
type of information people submit. They may submit simple votes for either option
(as in the below-cited literature), or votes with abstention allowed, or subjective
probabilities of the correctness of alternative 1, or statements chosen from the set
of statements {‘I am sure of guilt’, ‘I am rather sure of guilt’, ‘I don’t know’, ‘I am
rather sure of innocence’, ‘I am sure of innocence’}, and so on. We also allow the
situation in which different people are asked to submit different types of inputs; for
example, ‘experts’ might be asked to submit more informative inputs than others.

The case in which people submit their subjective probabilities of H1 (the hypoth-
esis that 1 is correct) has a distinguishing property: Under independence and an
additional assumption, epistemically monotonic procedures can be devised without
recourse to any (unknown) parameters — in contrast, for instance, to the case of sim-
ple votes analysed by the literature, in which knowledge of competence parameters
is required. More precisely, we shall show that a procedure aggregating subjective
probabilities (x1, ..., xn) of H1 is epistemically monotonic if and only if

the procedure decides according to some threshold for
nX
i=1

log
xi

1− xi
. (2)

The only quantities involved in this sum are the known submitted subjective probabil-
ities x1, ..., xn of H1. Note the formal similarity of (2) to the corresponding statement
for the case of simple votes: One only needs to replace person i’s submitted proba-
bility xi in (2) by his or her competence pi in the simple-vote case and put a minus
in front of those summands in which the person votes for 0. But this analogy seems
to be a coincidence, since (2) holds for quite different reasons.

Literature review on epistemically optimal procedures. Classical Condorcet jury
models stand between the epistemic and the procedural approach3: On the one hand,
simple majority voting is adopted on procedural grounds, and, on the other hand,
the epistemic (truth-tracking) performance of this procedure is analysed.5 Nitzan and

5For a collection of results in the case of independent voting, see Grofman, Owen and Feld (1983).
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Paroush (1982) and Shapley and Grofman (1984) have taken a ‘purely epistemic’ per-
spective by choosing the procedure so as to optimise the truth-tracking performance,
at the expense of giving up the procedural concern of ‘one man, one vote’. Assum-
ing independent voting, they derive optimal procedures of the type (1). The result
is successively generalised by Nitzan and Paroush (1984a, 1984b) and Ben-Yashar
and Nitzan (1997).6 Gradstein and Nitzan (1986) analyse conditions under which, in
small groups, the epistemically optimal weighted rule reduces to common rules such
as simple majority rule or expert rule. The important and complex question of the
effect of dependence between votes on the performance of group judgments has been
studied for non-weighted majority rules (e.g. Berg (1993), Boland, Proschan, and
Tong (1989), and Ladha (1993, 1995)), but the same question for weighted major-
ity rules has been little addressed; see, however, Shapley and Grofman (1984) and
Berry (1994). The problem that competence levels are little known in practice has
been tackled mainly by treating a person’s competence as a random variable with a
certain (known) distribution; see Nitzan and Paroush (1984c), Gradstein and Nitzan
(1986), Berend and Harmse (1993), Sapir (1998), and Berend and Sapir (2002).

Structure of the paper. After defining the model (Sections 2 and 3), I introduce
and discuss Epistemic Monotonicity (Section 4). I then prove representation theorems
for the class of epistemically monotonic procedures, first in the general case (Section
5) and then in the case of independence (Section 6). To illustrate these results, I
then discuss three examples: In Section 7, I consider the case that people submit
simple votes, as assumed in the above-cited literature; in Section 8, I discuss the case
in which people submit their degrees of belief; and in Section 9, I consider the case
of a mixed profile, where some individuals submit simple votes and others (e.g. the
‘experts’) submit their degrees of belief. In Section 10, I restate all of our theorems for
the case in which the criterion is not Epistemic Monotonicity but the more classical
criterion of expected-utility maximisation, thereby generalising the main results of
the literature to arbitrary inputs. Section 11 contains a conclusion. In Appendix A,
we discuss a certain generalisation. Proofs are given in Appendix B.

Notation. We denote random variables by capital letters (X,X1,X2, ...), and
particular realisations of them by small letters (x, x1, x2, ...). The probability of the
event X = x, P (X = x), is simply written P (x); and analogously for all other
random variables (X1,X2, ...). This notation is naturally extended to conditional
and joint probabilities: P (x|H0) means P (X = x|H0), P (H0|x) means P (H0|X =
x), P (x1, ..., xn|H1) means P (X1 = x1, ...,Xn = xn|H1), etc. Sets are written in
calligraphic (X1,X ,F ,...).

6Nitzan and Paroush (1984a, 1984b) allow both alternatives to have different prior probabilities of
correctness, and allow the four possible outcomes (correct/incorrect decision in favour of alternative
0/1) to have four different utility values. Later, Ben-Yashar and Nitzan (1997) also allow non-
symmetric competence, that is, they allow the case in which a person’s probability of making the
correct choice given that 0 is the correct choice differs from that given that 1 is the correct choice.
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2 A binary choice problem with an arbitrary type of
profile

Recall that we are considering a group of n persons, labelled i = 1, ..., n, facing any
binary decision problem. By assumption, one of the two options, 0 and 1, is the
‘correct’ alternative and the other option is the ‘incorrect’ alternative. H0 (H1) is the
hypothesis that option 0 (1) is correct. Note that H0 is equivalent to ∼ H1, and H1

to ∼ H0.
We allow complete generality regarding the type of profile collected from the

group. For each person i, let Xi be the set of all inputs xi that person i may submit.
This set could be the same for all persons (X1 = X2 = ... = Xn) or differ across
persons (e.g. the ‘experts’ are asked to provide more informative inputs than the
others). For instance, recalling the examples of the introduction, we have

(a) Xi = {0, 1} for simple-vote submission,
(b) Xi = {0, 1,‘abstention’} if abstention is also allowed,
(c) Xi = {1%, 2%, 3%, .., 98%, 99%} as an example of submission of a subjective

probability of the hypothesis H1 (that 1 is the correct option),
(d) Xi = {‘I am sure of guilt’, ‘I am rather sure of guilt’, ‘I don’t know’, ‘I

am rather sure of innocence’, ‘I am sure of innocence’} as an example of ‘ticking a
statement’.

For technical simplicity, we assume that each person’s Xi is a (non-empty) finite
set, i.e. that each person chooses between only finitely many possible inputs.7 We
impose no restrictions on the submitted profiles, and so the set of allowed profiles is
the Cartesian product

X := X1 × ...×Xn = {(x1, ..., xn)|x1 ∈ X1&...&xn ∈ Xn} (universal domain).

Let F be the set of all decisive procedures defined on the universal domain X , i.e. of
all functions f : X 7→ {0, 1}. Of course, f(x) is 0 (1) if for profile x the decision is 0
(1).

3 Likelihoods of profiles

We assume that each profile x has a certain likelihood of occurring given H0 and a
certain likelihood of occurring given H1 — an assumption we have in common with
the above-cited literature. More precisely, for each person i, the input xi is seen as
the realisation of a random variable Xi taking values in Xi, and hence the profile
x = (x1, ..., xn) is a realisation of the random vector X := (X1, ...,Xn) taking values
in the Cartesian product X = X 1 × ...×Xn. For each profile x = (x1, ..., xn) there is

- a probability of this profile given H0: P (x|H0) = P (x1, ..., xn|H0), and
- a probability of this profile given H1: P (x|H1) = P (x1, ..., xn|H1).
These probabilities are often called “likelihoods”, as opposed to the “(prior) prob-

abilities” P (H0) and P (H1) and the “(posterior) probabilities” P (H0|x) and P (H1|x).
7Our discussion could be extended to infinite sets Xi. In the case of uncountably infinite sets

Xi (e.g. Xi = (0, 1)), one would have to talk not about probabilities of different xi ∈ Xi, but
of a probability density function defined over Xi, and the likelihood-ratio would be a ratio not of
probabilities of xi, but of densities in xi.
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For instance, in the simple-vote case Xi = {0, 1} of the cited literature, the likelihood
functions P (x|H0) and P (x|H1) can, under independence, be expressed in terms of
competence parameters. But, of course, likelihood functions may in principle be spec-
ified for any type of profile (such as for the types (a)-(d) in Section 2), and moreover
independence is not a necessary assumption.

We further suppose that P (x|H0) and P (x|H1) are non-zero for all profiles x. So
each profile x must have a positive probability of occurring both under H0 and H1.
This assumption might be too restrictive, and in Appendix A we see that our results
essentially remain if the assumption is relaxed.

4 Epistemic Monotonicity

To be able to state the principle of Epistemic Monotonicity independently of prior
information, we need a brief preparation. For two profiles x, x0, consider this question:
Which profile makes the hypothesis H1 (that 1 is the correct choice) more probable,
i.e. which of P (H1|x) and P (H1|x0) is larger? Let us see why the answer to this
question does not depend on the size of the prior probability P (H1), i.e. on the
available information prior to observing any votes. We have to show that the relation
P (H1|x) ≤ P (H1|x0) holds for some specification of the prior r = P (H1) ∈ (0, 1) if
and only if it holds for any specification of P (H1). By Bayes’ Theorem,

P (H1|x) = rP (x|H1)

rP (x|H1) + (1− r)P (x|H0)
.

By dividing numerator and denominator by P (x|H1), we obtain

P (H1|x) = r

r + (1− r){LR(x)}−1 , (3)

where LR(x) denotes the

likelihood-ratio LR(x) :=
P (x|H1)

P (x|H0)
(for all x ∈ X ). (4)

(3) shows that P (H1|x) is a strictly increasing function of the likelihood-ratio LR(x),
regardless of the value of the prior r = P (H1). In other words, P (H1|x) ≤ P (H1|x0)
if and only if LR(x) ≤ LR(x0), whatever the value r.

Epistemic Monotonicity (EM). For every two profiles x , x0 ∈ X , if P (H1|x) ≤
P (H1|x0) (for some arbitrary and hence every specification of the prior probability
r = P (H1) ∈ (0, 1)), then f(x) ≤ f(x0).

Note that the inequality f(x) ≤ f(x0) means that the pair (f(x), f(x0)) is either
(0,0), (0,1), or (1,1), but not (1,0). To check whether a procedure f satisfies (EM)
one does not need to know the true prior probability of H1 or any utilities. But
one does need to know the likelihood functions P (x|H0) and P (x|H1); whether f is
epistemically monotonic crucially depends on the likelihood functions.

Why impose (EM)? The main reason is the general social choice theoretic search
for weak requirements. Indeed, (EM) seems a minimal condition of epistemic consis-
tency or soundness, which might be acceptable for groups that reject expected-utility
maximisation or cannot agree on the values of utilities and/or priors.
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5 Which procedures are epistemically monotonic?

It is relatively easy to prove that Epistemic Monotonicity requires that procedures
decide according to some threshold for the posterior P (H1|x), or, equivalently, ac-
cording to some threshold for the likelihood-ratio LR(x). First, let us clarify our
language.

Definition 1 For every procedure f ∈ F and every function h(x) mapping X 7→ R,
we say that f decides “according to (the) threshold h∗ for h(x)” (where h∗ ∈ R is a
given number) if

f(x) =

½
1 if h(x) > h∗,
0 if h(x) ≤ h∗, for all x ∈ X ;

and we say that f decides “according to some threshold for h(x)” if there exists an
h∗ ∈ R such that f decides according to threshold h∗ for h(x).

For instance, f may decide according to some threshold for the posterior prob-
ability h(x) := P (H1|x), or according to some threshold for the likelihood-ratio
h(x) := LR(x), or, if f is a weighted supermajority rule, according to some threshold
for the weighted sum of votes. Note that the value of the threshold h∗ is not uniquely
defined.8

A general characterisation of epistemically monotonic procedures is given by

Theorem 1 For a procedure f ∈ F, the following statements are equivalent:
(i) Epistemic Monotonicity (EM).
(ii) For some specification of the prior probability r = P (H1) ∈ (0, 1), f decides

according to some threshold for P (H1|x).
(iii) For every specification of the prior probability r = P (H1) ∈ (0, 1), f decides

according to some threshold for P (H1|x).
(iv) f decides according to some threshold for LR(x).

The proof is given in Appendix B. What should be relatively clear from our
discussion prior to introducing (EM) is that each of (ii), (iii), (iv) implies (i). Further,
(ii) is a weaker statement than (iii), and my only reason for including (ii) is to point
out that (ii) is already sufficient for Epistemic Monotonicity.

In summary, an epistemically monotonic procedure can be characterised either by
a threshold for the likelihood-ratio LR(x), or by a threshold for the posterior P (H1|x)
once a prior is specified. Just as there are many possible thresholds for P (H1|x) resp.
LR(x), there are many epistemically monotonic procedures. By Theorem 1, each
threshold for P (H1|x) resp. LR(x) yields an epistemically monotonic procedure; con-
versely, each epistemically monotonic procedure has the form of deciding according

8 Indeed, for a procedure f that decides according to some threshold for h(x) the corresponding
threshold h∗ may be any value in the interval max{h(x)|x ∈ X&f(x) = 0} ≤ h∗ < min{h(x)|x ∈
X&f(x) = 1} (where this interval of equivalent thresholds has positive length since X is by assump-
tion finite). If h∗ is chosen strictly between both interval bounds (rather than equal to the lower
bound) then h(x) 6= h∗ for all x ∈ X . This shows that, in the definition of "deciding according
to some threshold for h(x)", it is not essential that we defined the decision as 0 if h(x) equals the
threshold.
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to some threshold for P (H1|x) resp. LR(x). In Section 10, I provide an analogous
theorem for expected-utility maximisation; the latter condition will this time deter-
mine precise thresholds for P (H1|x) and LR(x), thereby uniquely determining the
procedure f.

6 Which procedures are epistemically monotonic under
independence?

Theorem 1 characterises epistemically monotonic procedures f in full generality. Now
let us make the significant restriction of

Independence (I). The inputs are independent given the true hypothesis. Explicitly,
for all inputs x1 ∈ Xi, ..., xn ∈ Xn and each alternative a ∈ {0, 1},

P (x1, ..., xn|Ha) = P (x1|Ha)× ...× P (xn|Ha).

This assumption is, in particular, made by Condorcet’s jury model and by most
of the cited literature on optimal procedures. An advantage of having (I) is that it
is sufficient to specify the individual likelihoods P (xi|Ha) (i ∈ {1, ..., n}, a ∈ {0, 1}),
because then the joint likelihood P (x|Ha) can be obtained by taking the product of
all of the individual likelihoods. With regard to the class of epistemically monotonic
procedures, we will show that (I) entails that such procedures must be weighted su-
permajority rules, in the following sense of weighted supermajority rules, generalised
to allow arbitrary types of input.

Definition 2 A procedure f ∈ F is called a “weighted supermajority rule” or just
a "weighted rule" if it decides according to some threshold for w(x) :=

Pn
i=1wi(xi),

where, for each person i ∈ {1, ..., n}, wi(xi) is some function mapping Xi 7→ R. The
function wi(xi) is called (person i’s) “weight function”, since it assigns “weights”
wi(xi) to inputs xi ∈ Xi.

By Theorem 1 (iv), f is epistemically monotonic if and only if f decides according
to some threshold for LR(x). By Independence, LR(x) factorises into the product of
all individual likelihood-ratios:

LR(x) =
P (x|H1)

P (x|H0)
=

P (x1|H1)× ...× P (xn|H1)

P (x1|H0)× ...× P (xn|H0)
= LR(x1)× ...× LR(xn),

where LR(xi) is person i’s

individual likelihood-ratio LR(xi) :=
P (xi|H1)

P (xi|H0)
, for all x ∈ X .

Now, f decides according to threshold h∗ for LR(x) if and only if f decides according
to threshold log h∗ for

logLR(x) = log{LR(x1)× ...× LR(xn)} =
nX
i=1

logLR(xi) =
nX
i=1

wi(xi),

8



where wi(xi) is defined as person i’s

individual log-likelihood-ratio wi(xi) := logLR(xi) = log
P (xi|H1)

P (xi|H0)
, for all x ∈ X .

(5)
This proves

Theorem 2 Suppose Independence (I). A procedure f ∈ F satisfies Epistemic Monotonic-
ity (EM) if and only if f is a weighted rule with weight functions given by the indi-
vidual log-likelihood-ratios (5).

Again, note that Theorem 2 leaves the threshold of the weighted rule open. There
are many thresholds, and hence many epistemically monotonic procedures. The ana-
logue of Theorem 2 for expected-utility maximisation is provided in Section 10.

7 Example 1: Aggregating simple votes

The simplest type of profile is given when each xi is simply a vote for either alternative,
i.e. when Xi = {0, 1} for all i. In this situation, Theorem 2 resembles results in
the literature (e.g. Nitzan and Paroush (1984a), p. 214), apart from the different
optimality criterion. Expressed in terms of person i’s competence parameters p0i :=
P (Xi = 0|H0) and p1i := P (Xi = 1|H1), the individual likelihood-ratios are given by

LR(xi) =
P (xi|H1)

P (xi|H0)
=


p1i
1−p0i

, if xi = 1,
1−p1i
p0i

, if xi = 0.

So, under Independence, a procedure f ∈ F is epistemically monotonic if and only if
f is a weighted rule with weight functions given by

wi(xi) := logLR(xi) =

 log
p1i
1−p0i

, if xi = 1,

log
1−p1i
p0i

= − log p0i
1−p1i

, if xi = 0.

If, for simplicity, we assume symmetric competence p1i = p0i =: pi, wi(xi) can be
expressed in a condensed way as

wi(xi) = (−1)xi+1 log pi
1− pi

, for all xi ∈ Xi.

In the case that the first three persons vote xi = 1 and all others vote xi = 0, option
1 is chosen according to some threshold for the sum

nX
i=1

wi(xi) =
nX
i=1

(−1)xi+1 log pi
1− pi

=
3X

i=1

log
pi

1− pi
−

nX
i=4

log
pi

1− pi
. (6)

If all jurors i are ‘competent’ (pi > 1/2), votes for 1 increase the chances of 1
(wi(1) > 0) and votes for 0 increase the chances of 0 (wi(0) < 0), as expected. The
more competent a person i is (higher pi), the more strongly the vote xi is weighted
(higher absolute value |wi(xi)| = log pi

1−pi ). If person i has competence pi = 1/2, the
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vote has no influence since wi(1) = wi(0) = log 1 = 0. If person i has competence
pi < 1/2, the vote is counted negatively (wi(1) < 0 and wi(0) > 0), so that a
vote for one alternative increases the chances of the other alternative. This strong
discrimination depending on competence reflects the purely epistemic orientation of
Epistemic Monotonicity, which neglects all procedural concerns.

8 Example 2: Aggregating subjective probabilities

The reason for choosing the aggregation of subjective probabilities as the second
example is that this is perhaps the only example in which epistemically monotonic
procedures can be devised without specifying the likelihood functions P (x|H1) and
P (x|H0). Indeed, we shall see that, under a special assumption, the weight function
wi(xi) = LR(xi) equals xi/(1 − xi) (up to an additive constant) — independently of
any parameters coming from the way likelihoods are specified! This contrasts with the
case of simple votes, in which the competence specification is crucial for determining
the weights.

Since people are submitting subjective probabilities, the set Xi of person i’s
allowed inputs xi is some subset of (0, 1); 9 For instance, each Xi could be equal
{1%, 2%, 3%, ..., 98%, 99%}.

Consider the posterior probability of H1 conditional just on person i’s submis-
sion xi. Using Bayes’ Theorem and then dividing numerator and denominator by
P (xi|H1),

P (H1|xi) = rP (xi|H1)

rP (xi|H1) + (1− r)P (xi|H0)
=

r

r + (1− r){LR(xi)}−1 .

Solving this for the individual likelihood-ratio LR(xi), we obtain

LR(xi) =
P (H1|xi)

1− P (H1|xi) ×
1− r

r
. (7)

This expresses LR(xi) in terms of the prior r and the posterior given xi. There is a
natural way to get hold of this posterior. Suppose that person i’s individual proba-
bilities are "well-calibrated" in the sense that the person neither tends to exaggerate,
nor to understate probabilities. Then we may assume that the posterior probability
of H1 given just the information that person i gives H1 a probability of xi is precisely
xi, i.e. P (H1|xi) = xi — a property for which a referee kindly suggested the term
"calibration". Formally:10

Calibration (C). For all persons i ∈ {1, ..., n} and inputs xi ∈ Xi, P (H1|xi) = xi.

Before discussing Calibration, let us see what it entails. Calibration is a truly
convenient assumption, since now the individual likelihood-ratio (7) becomes

LR(xi) =
xi

1− xi
× 1− r

r
. (8)

9For the following reason Xi cannot contain 0 or 1, i.e. we have to exclude the submission of xi = 0
or xi = 1. If xi = 0 then P (xi|H1) = 0 by (8), which was excluded earlier — see the end of Section 3,
and see Appendix A where this restriction is removed. Similarly, if xi = 1 then P (xi|H0) = 0 by (8),
which was also excluded.
10My condition of Calibration (C) is related to, but not identical with the concept of well-calibrated

probability assignments in the literature (e.g. Dawid (1982)).

10



By Theorem 2, under Independence, a procedure f is epistemically monotonic if and
only if f decides according to some threshold for

nX
i=1

logLR(xi) =
nX
i=1

log

µ
xi

1− xi
× 1− r

r

¶

=
nX
i=1

µ
log

xi
1− xi

+ log
1− r

r

¶

=
nX
i=1

log
xi

1− xi
+ n log

1− r

r
.

Since n log 1−rr is just a constant (i.e. does not depend on x), saying that f decides
according to some threshold for

Pn
i=1 logLR(xi) is equivalent with saying that f

decides according to some threshold for
Pn

i=1 log
xi
1−xi (the new threshold being shifted

by the amount n log 1−rr ). So, Theorem 2 becomes

Theorem 3 Suppose Independence (I) and Calibration (C). A procedure f ∈ F sat-
isfies Epistemic Monotonicity (EM) if and only if f is a weighted rule with weight
functions wi(xi) := log

xi
1−xi (i ∈ {1, ..., n}).

Since these weight functions do not depend on any parameters, one can construct
epistemically monotonic procedures aggregating subjective probabilities without even
specifying the likelihood functions P (xi|H1) and P (xi|H0), provided that one ac-
cepts the two tough assumptions of Independence and Calibration. This is surprising
since (EM) is based on posterior probabilities and hence on likelihoods. Again, the
many epistemically monotonic rules are given by the many possible thresholds forPn

i=1wi(xi).

Justification of Calibration (C). While Theorems 1 and 2 are entirely general
regarding the informational content profiles, Theorem 3 can only apply to profiles of
subjective probabilities, because only then can assumption (C) possibly be justified.
But what is this justification?

First, there may be good reasons to reject (C). For instance, if person i determines
the submitted xi by tossing a coin or by any other procedure unrelated to the truth
of H1, then xi provides no evidence about H1, and hence P (H1|xi) = P (H1) instead
of P (H1|xi) = xi. Or, if person i is a notorious liar who submits xis that are the
higher, the lower his or her genuine belief about H1, then xi provides evidence in the
opposite direction: P (H1|xi) should be a decreasing function of xi, not P (H1|xi) = xi.
Finally and more realistically, person i might be sincere but unable to form rational
beliefs; for instance, if person i notoriously underestimates the probability of H1, then
P (H1|xi) > xi instead of P (H1|xi) = xi; and if person i notoriously overestimates
the probability of H1, then P (H1|xi) < xi.

However, in groups where people submit individual probabilities of high quality,
(C) could be defended along the following lines. Roughly, the idea is that there
is, on the one hand, shared knowledge which all group members have in common,
and, on the other hand, private knowledge held by individual group members. The
probability function P (.) represents the shared knowledge of the group, and so the

11



prior probability P (H1) reflects only shared knowledge. Person i has more knowledge
than the shared knowledge, since he or she also has private knowledge, and so person
i’s probability of H1, namely xi, is built on more knowledge than the prior P (H1).
As a consequence, someone who starts with the shared knowledge and then learns
that person i (who knows more) assigns a probability of xi to H1 should revise his
or her probability of H1 from P (H1) to xi; formally, P (H1|xi) = xi. More precisely,
the relation P (H1|xi) = xi is based on the assumption that person i is a rational
Bayesian agent11 and is sincere in his or her submission, which guarantees that the
submitted probability xi of H1 was derived by person i by applying Bayes’ rule in
the light of private information. Under this interpretation of xi, it is indeed true that
the probability of H1 given the submission xi is P (H1|xi) = xi.12 Deviation from
this would mean that it is wrong either that person i is a rational Bayesian agent11

(i.e. has obtained xi by Bayesian updating), or that person i represents the shared
knowledge (his or her basis for updating) by the probability function P (.), or that
person i is sincere (i.e. tells his or her true probability of H1).

Note the analogy between Calibration and van Fraassen’s Reflection Principle.13

9 Example 3: Mixing simple votes and subjective prob-
abilities

By combining Examples 1 and 2, we can derive epistemically monotonic procedures
for the case that some persons submit simple votes and others (the ‘experts’) submit
their subjective probabilities of H1. Denoting by Iv the set of persons i submitting
simple votes (Xi = {0, 1}), and by Ip the set of persons i submitting subjective
probabilities (Xi ⊂ (0, 1)), we define weight functions by

wi(xi) :=

(
(−1)xi+1 log pi

1−pi , if i ∈ Iv,
log xi

1−xi , if i ∈ Ip. (9)

11A rational Bayesian agent updates his or her beliefs in light of new information according to
Bayes’ rule.
12More precisely, assume that person i’s private information is the observation of the value si

taken by a random variable Si (for instance, person i might have observed that the random variable
"weather on the day of the crime" took the value "sunshine"). Then person i, as a rational Bayesian
agent11, assigns to H1 a (posterior) probability of xi = P (H1|Si = si). Under this assumption about
person i’s belief formation, (C) actually follows as a theorem. Let me sketch the simple proof. For
each value si of Si, we denote by d(si) = P (H1|Si = si) the corresponding value of xi. So Xi = d(Si),
i.e. the vote is a function of the signal Si. If the function d(.) is one-to-one, conditionalising on the
value xi of Xi is equivalent to conditionalising on the corresponding value si := d−1(xi) of Si, which
implies that P (H1|Xi = xi) = P (H1|Si = si) = xi. These relations, in fact, hold even if d(.) is
many-to-one, with the only difference being that now si is one of possibly many inverse images of xi
under d(.).
13While Calibration compares the shared knowledge of the group with the (larger) knowledge of

person i, the Reflection Principle compares the knowledge of a person at a time t with the (larger)
knowledge of the same person at a later time t0. The Reflection Principle states that, if the person
at time t (hypothetically) learns that at time t0 he or she will assign a probability of p to an event,
then the person should revise his or her present probability of that event to p. In short, if you are
told that in a month time you will believe that party X will win the election, then you should now
believe that party X will win the election. The justification is, of course, that future beliefs are based
on more knowledge. A more remote analogy may be drawn from Calibration (C) to Lewis’ Principal
Principle (1980).
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Here, for simplicity, we have again assumed symmetric competence pi := P (Xi =
1|H1) = P (Xi = 0|H0) for persons i ∈ Iv. Supposing Independence, as well an
axiom analogous to Calibration but restricted to persons i ∈ Ip, a procedure is
epistemically monotonic if and only if it is a weighted rule with weight functions
given by (9). In other words, an epistemically monotonic procedure decides according
to some threshold for X

i∈Iv
(−1)xi+1 log pi

1− pi
+
X
i∈Ip

log
xi

1− xi
.

The latter expression highlights that it is easier to incorporate a submitted degree of
belief xi into the decision than a submitted vote xi, because the term log xi

1−xi does not
depend on parameters, while the term (−1)xi+1 log pi

1−pi depends on the competence
pi.

10 The analogous results based on expected-utility max-
imisation

It is worthwhile to restate our theorems for the case in which the criterion is expected-
utility maximisation instead of Epistemic Monotonicity, thereby connecting to the
literature.14 This leads to precise thresholds. To indicate the analogies to our earlier
theorems, let us use the same labels as before, appended with a star “∗”.

Unlike before, assume now that there are fixed prior probabilities of correctness
and utilities of outcomes. More precisely, there is a prior probability r := P (H1) ∈
(0, 1) of 1 being the correct alternative, and there is a utility uya := u(y, a) assigned
to each of the four possible outcomes (y, a) ∈ {0, 1}2, where y ∈ {0, 1} stands for the
collective decision and a ∈ {0, 1} for the correct alternative. The values u11 and u00
are the utilities of choosing 1 when 1 is correct resp. 0 when 0 is correct. The values
u10 and u01 are the utilities of the two types of incorrect decisions. We make the
reasonable assumption that u00 > u10 and u11 > u01, reflecting that correct decisions
are always better than incorrect decisions.

Under procedure f ∈ F , utility is a random variable Uf := u(f(X), A), which
depends on the random profile X and on the random correct alternative A. The
expected utility can be calculated by summing the utilities of all four outcomes (y, a) ∈
{0, 1}2 weighted by their probabilities:
E(Uf ) =

X
(y,a)∈{0,1}2

uyaP (f(X) = y&Ha) =
X

(y,a)∈{0,1}2
uyaP (Ha)P (f(X) = y|Ha).

Since the event f(X) = y is the event that the random profile X belongs to the set
of profiles x ∈ X for which f(x) = y, the probability P (f(X) = y|Ha) can be written
as the sum of probabilities

P
x∈X&f(x)=y P (x|Ha). So,

E(Uf ) =
X

(y,a)∈{0,1}2
uyaP (Ha)

X
x∈X&f(x)=y

P (x|Ha)

= r
X

y∈{0,1}
uy1

X
x∈X&f(x)=y

P (x|H1) + (1− r)
X

y∈{0,1}
uy0

X
x∈X&f(x)=y

P (x|H0),

14See Ben-Yashar and Nitzan (1997, Theorem 3.1) for the most general result, although resticted
to the simple-vote case.
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which illustrates how the expected utility E(Uf ) depends on the three components:
the prior r = P (H1), utilities uya, and likelihoods P (x|H0) and P (x|H1).

In principle, there can be more than one procedure f with maximal expected
utility E(Uf ). To achieve uniqueness (and stick to decisive procedures), we will impose
a requirement to the effect that for those profiles x where the decision f(x) does not
affect the expected utility E(Uf ), this decision f(x) will always be alternative 0.
Let us say that a procedure f ∈ F is “more favourable to option 0” than another
procedure f1 ∈ F\{f} in case f(x) ≤ f1(x) for all x ∈ X . In other words, f is more
favourable to 0 than f1 in case f decides for 0 whenever f1 does (but might decide
for 0 when f1 decides for 1). We impose

Expected-Utility Maximisation (UM). f has maximal expected utility (i.e. E(Uf ) =
supf 0∈F E(Uf 0)) and is more favourable to option 0 than any other procedure in F
with maximal expected utility.

This axiom requires that among all procedures maximising the expected utility, we
pick the one most favourable to 0.15 Often there is just one procedure with maximal
E(Uf ), in which case the clause “and is more favourable...” is superfluous.

In analogy to Theorem 1, we have

Theorem 1* For a procedure f ∈ F , the following statements are equivalent:
(i∗) Expected-Utility Maximisation (UM).
(ii∗) f decides according to the threshold 1

1+
u11−u01
u00−u10

for P (H1|x).
(iv∗) f decides according to the threshold u00−u10

u11−u01 × 1−r
r for LR(x).

Note that in (iv∗) the threshold for LR(x) is a decreasing function of the prior
r = P (H1). So, the higher the prior r, the easier for LR(x) to exceed the threshold,
and hence the more likely a decision in favour of 1, which is intuitively plausible.
The threshold in (ii∗) does not depend on the prior r, intuitively because the prior is
already contained in P (H1|x).

Comparing Theorems 1 and 1∗, it is immediately clear that (ii∗) implies (ii) and
that (iv∗) implies (iv). So, (i∗) implies (i), i.e. we have

Corollary 1 If f ∈ F satisfies Expected-Utility Maximisation (UM), then f satisfies
Epistemic Monotonicity (EM).

Now assume Independence. In exactly the same way as Theorem 1 implies The-
orem 2, Theorem 1∗ implies

Theorem 2* Suppose Independence (I). A procedure f ∈ F satisfies Expected-Utility
Maximisation (UM) if and only if f is the weighted rule with weight functions given
by the individual log-likelihood-ratios (5) and threshold log u00−u10

u11−u01 − log r
1−r .

15 If instead of (UM) one prefers to impose that the procedure be maximally favourable to alternative
1 among all procedures f with maximal E(Uf ), then one should impose (UM) after swapping the
names of both alternatives. Or, alternatively, one should redefine "deciding according to threshold
h∗ for h(x)" (Definition 1) such that the decision is 1 (not 0) if h(x) = h∗; the results of this section
would then stay true for this new definition and the modified (UM).
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Finally, regarding the aggregation of subjective probabilities, the analogue of The-
orem 3 is

Theorem 3* Suppose Independence (I) and Calibration (C). A procedure f ∈ F
satisfies Expected-Utility Maximisation (UM) if and only if f is the weighted rule
with weight functions wi(xi) := log xi

1−xi (i ∈ {1, ..., n}) and threshold log u00−u10
u11−u01 +

(n− 1) log r
1−r .

Note that here the threshold is an increasing function of the prior r = P (H1),
unlike in Theorems 1∗(iv∗) and 2∗. At first sight this is surprising since more prior
support for H1 should make it easier to decide for option 1 — so how can there be
a higher threshold? Intuitively, the explanation is that higher prior support for H1

increases the chances of 1 despite the higher threshold, because more prior support
for H1 leads to larger subjective beliefs xi of H1 (see footnote 12). On the other
hand, if we hold the submissions xi fixed and increase the prior r = P (H1), then
the decreasing chances of 1 (the increasing threshold) have the following intuitive
justification. The more probable H1 is a priori (higher r), the smaller the submitted
beliefs xi of H1 are compared to r, and hence the more it must be the case that
people’s private information (which is not part of the prior information) supports
H0. But if people’s private information gives more support for H0, it becomes more
appropriate to choose option 0, which justifies the higher threshold.

11 Conclusion

We have proven that, from an epistemic perspective, procedures should decide ac-
cording to some threshold for the likelihood-ratio LR(x), whatever the type of profile
x (Theorem 1). In the special case of Independence, this is equivalent to deciding ac-
cording to some threshold for the sum of personal log-likelihood-ratios

Pn
i=1 logLR(xi),

which we call a weighted (supermajority) rule with weight functions wi(xi) := logLR(xi).
Perhaps the most interesting application is the aggregation of subjective probabili-
ties. Here, under Calibration, epistemically monotonic procedures decide according
to some threshold for

Pn
i=1 log

xi
1−xi , which does not involve any unknown parameters

such as competence (Theorem 3).
The entire analysis of optimal procedures may be done either based on Epistemic

Monotonicity (see Sections 2-9), or based on Expected-Utility Maximisation (Section
10). Both approaches yield the same optimal procedures, with the only difference
that Epistemic Monotonicity leaves the threshold open, while Expected-Utility Max-
imisation provides precise thresholds as a function of the prior probability of H1 and
utilities. This is highlighted by the analogy between Theorems 1, 2, 3 and Theorems
1∗, 2∗, 3∗.

It should be emphasised that the assumption of Independence is quite radical
and limits the practical use of Theorems 2 and 3. Independence requires that the
individually perceived evidences that caused the persons’ inputs be probabilistically
independent (and hence in particular have no overlap), which involves more than
just causal independence between voters. The more realistic case, probabilistic de-
pendence, is covered by Theorem 1, but here the problem is that the n-dimensional
likelihoods are hard to specify in practice.
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One might generally object that Epistemic Monotonicity does not yield a well-
defined procedure and that, in order to choose a specific threshold, at least some
sort of utility and prior-probability considerations are inevitable. This is a fair point,
to which one might give two answers. First, what our analysis shows is that in
situations where priors and utilities are unavailable or controversial, the procedure
choice does not become arbitrary from an epistemic perspective but that Epistemic
Monotonicity requires a very particular type of procedure. The threshold might then
be chosen intuitively, in the worst case arbitrarily. Second, a person or group that
rejects the principle of Expected-Utility Maximisation might still accept Epistemic
Monotonicity as a minimal requirement of epistemic consistency. Since, as we have
shown, Epistemic Monotonicity leads to essentially the same procedure as Expected-
Utility Maximisation, apart from the open threshold, this person or group might want
to rethink the rejection of Expected-Utility Maximisation. In this sense, there is no
conflict between Epistemic Monotonicity and Expected-Utility Maximisation; rather,
the former makes a good case for the latter.

A Allowing zero likelihoods of profiles

The assumption that P (x|H1) 6= 0 and P (x|H0) 6= 0 for all profiles x (see Section
3) might be too restrictive. Indeed, perhaps the occurrence of certain profiles x is
impossible under H1 or under H0. As an example in which one might prefer to let
P (x|H0) = 0, consider a convict-or-acquit problem, and assume person i submits the
input xi = ‘I saw the defendant commit the murder’. Suppose that person i is surely
not a liar and that his or her memory and eye sight are infallible. It is impossible that
person i submits xi given innocence (H0), and so a profile x containing this xi should
have probability zero given innocence: P (x|H0) = 0. A (less realistic) example arises
if simple vote are aggregated (see Section 7) and some person i has competence pi = 1:
Then, profiles x in which person i’s vote xi is incorrect have probability 0. For a more
realistic example, consider the case of aggregating subjective probabilities of H1 and
assume Calibration (see Section 8). Here, profiles can have zero likelihood if for some
person i the set Xi contains 0 and/or 1; see footnote 9. This is why we had to assume
0, 1 /∈ Xi in Section 8. But this restriction might be undesirable, because it prevents
people from submitting the information that they are certain of the correctness of
one of the alternatives.

We now allow P (x|H0) and P (x|H1) to be zero. The first remark is that if both
P (x|H1) and P (x|H0) are zero, the unconditional probability of x is zero, too:

P (x) = P (x|H1)P (H1) + P (x|H0)P (H0) = 0. (10)

But then the posterior probability P (H1|x) is undefined16, which is a problem because
(EM) is based on posterior probabilities. To avoid this problem, we have to consider
those (decisive) procedures that are defined on a subset of the universal domain
X1 × ... × Xn, namely on the set of those profiles x for which this problem does not
occur. So, we redefine the domain of profiles X as

X := {x ∈ X1 × ...×Xn|P (x|H1) 6= 0 or P (x|H0) 6= 0} (restricted domain).
16A conditional probability P (A|B) is, per definition, the ratio P (A&B)/P (B), which is well-

defined only if P (B) 6= 0.
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A procedure f defined on X does not yield a decision when x /∈ X . This restriction
does not seem strong, because by (10) profiles x /∈ X occur with probability zero.We
redefine the set F as the set of (decisive) procedures with (non-universal) domain X ,
i.e. as the set of functions f : X 7→ {0, 1}.

As an example, in the aggregation of subjective probabilities we may now put
Xi := {0%, 1%, ..., 99%, 100%}, thus allowing the submission of xi = 0% (certainty of
H0) or of xi = 100% (certainty of H1). Note, however, that the restricted definition of
X prevents profiles x = (x1, ..., xn) ∈ X from containing both 0%s and 100%s, because
for such profiles P (x|H0) = P (x|H1) = 0, under Independence and Calibration.17

Again, this restriction does not seem strong, since it should be impossible that among
rational agents some are certain of H0 and others are certain of H1.

All of our axioms ((EM), (I), (C) and (UM)), definitions (Definitions 1 and 2) and
results (Theorems 1, 2, 3, 1∗, 2∗, 3∗, Proposition ?? and Corollary 1) remain true in
the present context. None of the axioms or results has to be reformulated, and the
results can be proven analogously. But the definitions and the meaning of certain
operations have to be extended in a sensible way so as to apply to new special cases.
These necessary generalisations are now discussed:

- We put c/0 :=∞ and c/∞ := 0, for all c > 0. This applies to the likelihood-ratio
LR(x) = P (x|H1)/P (x|H0) when P (x|H0) = 0. Also, log 0 := −∞ and log∞ = ∞,
which is needed when computing logLR(x).

- Definition 1 of deciding according to some threshold for h(x) has to be extended
to accommodate the case in which h(x) can take infinite values (needed when h(x) =
LR(x) or when h(x) = logLR(x)). We also need to allow the threshold h∗ for h(x)
to take infinite values ±∞ and even to take the ‘value’ −∞ − 1. Here, ‘−∞ − 1’
denotes an artificial number smaller than −∞, which is needed for the (obviously
epistemically monotonic) procedure that always chooses 1, even when LR(x) = 0,
i.e. when h(x) = logLR(x) = −∞; here, the threshold of h∗ = −∞ − 1 is needed
since h∗ = −∞ would lead to choosing 0 when h(x) = −∞. Thus, the new definition
formally states: For any procedure f ∈ F and any function h(x) mapping X 7→
R ∪ {−∞,+∞}, f decides “according to some threshold for h(x)” if there exists an
h∗ ∈ R ∪ {−∞− 1,−∞,+∞} (‘threshold’) such that

f(x) =

½
1 if h(x) > h∗,
0 if h(x) ≤ h∗, for all x ∈ X .

- Definition 2 of a weighted rule also has to be restated so as to allow the weight
functions wi(xi) to take on infinite values. Since (+∞)+(−∞) is undefined, it has to
be excluded that for some x ∈ X among w1(x1), ..., wn(xn) there can be infinite values
of different signs: A procedure f ∈ F is called a “weighted supermajority rule” or just
a “weighted rule” if it decides according to some threshold for w(x) :=

Pn
i=1wi(xi),

where for all i ∈ {1, ..., n} wi(xi) is some function mapping Xi 7→ R ∪ {−∞,+∞},
such that for no x ∈ X both −∞ and +∞ occur among w1(x1), ..., wn(xn). Crucially,
the latter condition imposed on weight functions is satisfied by the weight functions

17To see why, we use (8). If there is a 0 among x1, ..., xn, by (8) there is a 0 among
P (x1|H1), ..., P (xn|H1), implying that P (x|H1) = P (x1|H1) × ... × P (xn|H1) = 0. Similarly, if
there is a 1 among x1, ..., xn, by (8) there is a 0 among P (x1|H0), ..., P (xn|H0), implying that
P (x|H0) = P (x1|H0)× ...× P (xn|H0) = 0.
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wi(xi) of Theorem 2, which are defined as logLR(xi) (and should be defined arbi-
trarily if LR(xi) is undefined, i.e. if P (xi|H0) = P (xi|H1) = 0).18 Analogously, the
condition on weight functions is satisfied by the weight functions of Theorem 3, de-
fined as wi(xi) := log

xi
1−xi , because among x1, ..., xn there cannot be both 0s and 1s,

as noted earlier.

B Proofs

Theorem 1.We prove the equivalences by showing the implications (i)→(iii), (iii)→(ii),
(ii)→(iv), and (iv)→(i).

(iii)→(ii). Trivial.

(iv)→(i). Assume (iv), i.e. f decides according to some threshold h∗ for LR(x).
Let x, x0 ∈ X be any profiles such that P (H1|x) ≤ P (H1|x0). We have to show
that f(x) ≤ f(x0), i.e. that the pair (f(x), f(x0)) is not the pair (1, 0). We assume
f(x0) = 0 and have to show that f(x) = 0. By f(x0) = 0 and (iv), LR(x0) ≤ h∗.
By the discussion before introducing (EM), we have LR(x) ≤ LR(x0), which implies
LR(x) ≤ h∗. By (iv) it follows that f(x) = 0.

(ii)→(iv). Consider a prior r = P (H1) ∈ (0, 1) such that f decides according to
some threshold h∗ for P (H1|x). By (3),

P (H1|x) = r

r + (1− r){LR(x)}−1 ,

which can be solved with respect to LR(x) to give

LR(x) =
(1− r)

r({P (H1|x)}−1 − 1) .

Since LR(x) is an increasing function of P (H1|x), we have

P (H1|x) > h∗ if and only if LR(x) >
(1− r)

r({h∗}−1 − 1) =: h
∗∗.

So, f decides according to the threshold h∗∗ for LR(x).

(i)→(iii). Assume (EM). If f(x) = 1 for all x ∈ X , (iii) is trivially satisfied.
Now assume that f(x) = 0 for some x ∈ X . Consider any specification of the prior
probability r = P (H1) ∈ (0, 1), and let us show that f decides according to the
threshold

h∗ := sup{P (H1|x)|x ∈ X and f(x) = 0}
for P (H1|x). By definition of h∗, it is trivial that f(x) = 1 whenever P (H1|x) > h∗.
Now assume an x ∈ X such that P (H1|x) ≤ h∗, and let us show that f(x) = 0.
Since each set Xi is assumed finite, X is also finite, and so h∗ is the supremum over
a finite set. Hence h∗ = P (H1|x0) for some x0 ∈ X such that f(x0) = 0. Since

18The reason is that if logLR(xi) =∞ and logLR(xj) = −∞, then P (xi|H0) = 0 and P (xi|H1) =
0 and hence P (x|H0) = 0 and P (x|H1) = 0, implying that x /∈ X .
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P (H1|x) ≤ P (H1|x0), by (EM) f(x) ≤ f(x0). So, since f(x0) = 0, we have f(x) = 0.
QED.

Theorem 1∗. We first prove the equivalence of (i∗) and (ii∗). Since

E(Uf ) =
X
x∈X

P (x){uf(x),0P (H0|x) + uf(x),1P (H1|x)},

f satisfies (UM) if and only if for all x ∈ X the decision y = f(x) maximises the
term in curly brackets uy := uy0P (H0|x) + uy1P (H1|x) and is 0 if both decisions
y maximise it, i.e. if u1 = u0; in other words, the decision is y = 1 if and only if
u1 > u0. The latter holds if and only if

u10P (H0|x) + u11P (H1|x) > u00P (H0|x) + u01P (H1|x),

i.e., by P (H0|x) = 1− P (H1|x), if and only if

P (H1|x) > u00 − u10
u00 − u10 + u11 − u01

=
1

1 + (u11 − u01)/(u00 − u10)
. (11)

This proves the equivalence of (i∗) and (ii∗). To prove the equivalence with (iv∗), one
needs only to write P (H1|x) as r

r+(1−r){LR(x)}−1 and then solve inequality (11) for
LR(x). QED.

Theorem 3∗. By Theorem 2∗, f satisfies (UM) if and only if f decides according
to the threshold log u00−u10

u11−u01 − log r
1−r for

Pn
i=1 logLR(xi). By (8),

logLR(xi) = log

µ
xi

1− xi
× 1− r

r

¶
= log

xi
1− xi

+ log
1− r

r
.

So f satisfies (UM) if and only f decides according to the threshold log u00−u10
u11−u01 −

log r
1−r for

nX
i=1

logLR(xi) =
nX
i=1

log
xi

1− xi
+ n log

1− r

r
=

nX
i=1

log
xi

1− xi
− n log

r

1− r
,

which is equivalent with deciding according to the threshold log u00−u10
u11−u01+(n−1) log r

1−r
for

Pn
i=1 log

xi
1−xi . QED.
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