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Abstract

This paper proposes a simple unified framework of choice under changing aware-
ness, addressing both outcome awareness and (nature) state awareness, and both
how fine and how ezhaustive the awareness is. Six axioms characterize an (essen-
tially unique) expected-utility rationalization of preferences, in which utilities and
probabilities are revised according to three revision rules when awareness changes:
(R1) utilities of unaffected outcomes are transformed affinely; (R2) probabilities of
unaffected events are transformed proportionally; (R3) enough probabilities ‘ob-
jectively’ never change (they represent revealed objective risk). Savage’s Theorem
is a special case of the theorem, namely the special case of fixed awareness, in which
our axioms reduce to Savage’s axioms while R1 and R2 hold trivially and R3 re-
duces to Savage’s requirement of atomless probabilities. Rule R2 parallels Karni
and Viero’s (2013) ‘reverse Bayesianism’ and Ahn and Ergin’s (2010) ‘partition-
dependence’. The theorem draws mathematically on Kopylov (2007), Niiniluoto
(1972) and Wakker (1981). (JEL codes: D81, D83.)

Keywords: Decision under uncertainty, outcome unawareness versus state un-
awareness, non-fine versus non-exhaustive awareness, utility revision versus prob-

ability revision, small worlds versus grand worlds

1 Introduction

Savage’s (1954) expected-utility framework is the cornerstone of modern decision
theory. A widely recognized problem is that Savage relies on sophisticated and
stable concepts of outcomes and (nature) states: ideally, outcomes always capture
everything that matters ultimately, and states always capture everything that
influences outcomes of actions.? In real life, an agent’s concepts or ‘awareness’ can
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2This ideal translates partly into Savage’s formal analysis: his axioms imply high state soph-
istication (i.e., infinitely many states), while permitting low outcome sophistication (i.e., possibly
just two outcomes). So Savage’s formal model can handle an unsophisticated outcome concept,
but neither an unsophisticated state concept, nor changing state or outcome concepts.



be limited at two levels, and in two ways. It can be limited at the outcome or
state level, and it can be non-fine (coarse) or non-exhaustive (domain-restricted).
A social planner deciding where to build a new nuclear power plant on his island
has a non-exhaustive state concept if he fails to foresee some contingencies such
as a tsunami. He has a non-fine state concept if he conceives a tsunami as a
primitive possibility rather than decomposing it into the (sub)possibilities of a
tsunami arriving from the east, west, north, or south. These are examples of

state unawareness; analogous examples exist for outcome unawareness. Figure 1

Figure 1: An objective act (left) and its two subjective representations f (middle)
and g (right) under two different awareness levels (indicated by circles)

shows a situation where from an omniscient third-person perspective there are four
objective states a, b, ¢, d and four objective outcomes x,y, z, w. The left-hand plot
shows an objective act whose outcome is x under state ¢ and is z otherwise. The
middle and right-hand plots show two subjective awareness levels of the agent who
both times conceives only two outcomes and two states; each subjective outcome
(or state) is given by a set of one or more objective outcomes (or states), indicated
by a circle. In the middle plot, the agent lacks a fine awareness of outcomes and
states: x and y are merged into the same subjective outcome, and a and b into
the same subjective state. He also lacks an exhaustive awareness of outcomes and
states: w and d are ignored, i.e., absent from all subjective outcomes or states. The
mentioned objective act is conceived as an act f mapping {a, b} to {z}, and {c} to
{z,y}. In the right-hand plot, awareness is still not fine, but it is exhaustive, both
at the outcome and state level. The act is now reconceived as a constant act g
which yields outcome {z, z} at both subjective states {a, b} and {c,d}. One might
compare our objective and subjective states with Savage’s (1954) grand-world and
small-world states, respectively, although we allow changes in subjective states
while Savage takes both types of states to be fixed.

An agent with an expected-utility rationalization does in each awareness state
or context hold (i) a utility function over currently conceived subjective outcomes
and (ii) a probability function over currently conceived subjective states. So in the
awareness state shown in the middle of Figure 1 the agent assigns utilities only to
the subjective outcomes {x,y} and {z}, and probabilities only to the subjective
states {a, b} and {c}. I will consider revision rules governing the change in utilities
and probabilities as the agent’s awareness or concepts chage. The first two rules



are:

R1: Utilities of preserved subjective outcomes are transformed in an increasing

affine way.
R2: Probabilities of preserved subjective events are transformed proportionally.

These rules are vacuous when applied to the change from the middle awareness
state in Figure 1 to the right one, since no subjective outcome and only one
subjective state (i.e., {a,b}) is preserved. But now assume the middle awareness
state changes differently: all existing subjective outcomes and states are preserved,
and the new ones {w} and {d} are added. Then R2 requires the new probabilities of
{a,b} and {c} to be proportional to the old ones, and R1 requires the new utilities
of {z,y} and {z} to be an increasing transformation of the old ones (‘affineness’
is vacuous in case of only two preserved outcomes).

There is a clear need for a generalization of Savage’s expected-utility theory so
as to cope with changes in awareness of the various sorts. If such a generalization
has not yet been offered, it is perhaps because of two obstacles. One is the liter-
ature’s almost exclusive focus on state unawareness; I hope to raise ‘awareness’ of
outcome unawareness. Another obstacle is Savage’s high demands of state soph-
istication which go against the idea of state unawareness; we will find a way to
require less state sophistication, allowing for finite state spaces.

I shall offer a Savagean expected-utility (‘EU’) theory under changing aware-
ness, with ‘rational’ revision of utilities and probabilities. I take the agent to be
classical in all respects except from changing awareness (future research might
explore non-EU preferences under changing awareness and/or boundedly rational
revision rules). I work within a simple unified model of changing awareness, captur-
ing changes in outcome and state awareness, and in refinement and exhaustiveness.
Six axioms are then introduced, and shown to characterize an EU agent who, un-
der any change in awareness, updates his utilities and probabilities according to
the rules R1 and R2 and a third rule stated later. Probabilities are unique, and
utilities are unique up to increasing affine rescaling. Utility revision is a genuine
necessity: utilities cannot generally be scaled such that R1’s transformation is al-
ways the identity transformation. The theorem generalizes Savage’s Theorem: it
reduces to it in the limiting case of stable awareness, as our axioms then reduce to
Savage’s axioms, while rules R1 and R2 hold trivially and the third rule reduces
to Savage’s atomlessness condition on beliefs.

The framework allows for different interpretations. For instance, the agent’s
awareness level could have different sources; one of them is the framing of the
decision problem. Also, unawareness could be of radical and non-radical type.
Radical unawareness of X is an in-principle inability to imagine or represent X. As
yet unexperienced dimensions of reality or undiscovered phenomena presumably



fall under radical unawareness. Non-radical unawareness of X means that we
merely do not consider X, be it because we set X aside on purpose or overlook X
by mistake. Although we are in principle able to consider or understand X, we
leave X aside — either because X is not worth considering due to mental costs,
or because X escapes our attention due to framing or other circumstances. For
instance, in a cooking choice we ignore a coin toss just because nothing hinges on
it, and forget to ask how salty the dish will taste out of distraction; but we are
radically unaware of tastes and flavours we have never experienced.

Choice theorists have tackled unawareness in different ways. The agent’s
(un)awareness level can be an input or an output of the analysis: it can be an
exogenous starting point which is assumed, or a feature which should be revealed
by observed behaviour. Recent examples of the ‘revealed (un)awareness’ approach
are Schipper (2013) and Kochov (2016).*> My model follows the ‘exogenous aware-
ness’ approach, just like Ahn-Ergin’s (2010) model of framed contingencies and
Karni-Viero’s (2013) model of growing awareness. How does my model relate to
these two seminal contributions? Working in an Anscombe-Aumann-type frame-
work, Ahn-Ergin assume that each of various possible ‘framings’ of the relevant
contingencies leads to a particular partition of the objective state space (repres-
enting the agent’s state concept), and to a particular preference relation over those
acts which are measurable relative to that partition. Under plausible axioms on
partition-dependent preferences, they derive a compact EU representation with
fixed utilities and partition-dependent probabilities. The systematic way in which
these probabilities change with the partition implies our rule R2 (after suitable
translations). Karni-Viero, by contrast, model the discovery of new acts, out-
comes, and act-outcome links. They work in a non-standard framework which
takes acts as primitive objects and states as functions from acts to outcomes (fol-
lowing Schmeidler and Wakker 1987 and Karni and Schmeidler 1991). They char-
acterize preference change under growing awareness, using various combinations of
axioms. A key finding is that probabilities are revised in a reverse Bayesian way,
a property once again related to our revision rule R2.

The current analysis differs strongly from Ahn-Ergin’s and Karni-Viero’s. I now
mention some differences. I analyse awareness change at both levels (outcomes and
states) and of both kinds (refinement and exhaustiveness), while Ahn-Ergin limit
attention to changes in state refinement (with fixed state exhaustiveness and fixed
outcome awareness), and Karni-Viero assume fixed outcome refinement.! Ahn-
Ergin and Karni-Viero find that only probabilities are revised, yet I find that also

3Schipper takes unawareness of an event X to be revealed via nullness of both X and X’s
negation. Kochov studies revealed unawareness of future contingencies in a dynamic setting.

4Karni-Viero do capture changes in outcome exhaustiveness, through the discovery of new
outcomes. Changes in state awareness are captured indirectly: the discovery of new acts resp.
outcomes effectively renders states finer resp. more exhaustive.



utilities are revised. Ahn-Ergin and Karni-Viero introduce lotteries as primitives
(following Anscombe and Aumann 1963), while I invoke no exogenous objective
probabilities (following Savage 1954). Ahn-Ergin and Karni-Viero exclude the
classical base-line case of ‘state sophistication” with an infinite state space, while
I allow that ‘state sophistication’ is reached sometimes, or never, or always; this
flexibility is crucial for ‘generalizing Savage’.

In the background of the paper is a vast and active literature on unaware-
ness (e.g., Dekel, Lipman and Rustichini 1998, Halpern 2001, Heifetz, Meier and
Schipper 2006, Halpern and Rego 2008, Hill 2010, Pivato and Vergopoulos 2015,
Karni and Viero 2015). T do not attempt to review this diverse body of work,
ranging from epistemic to choice-theoretic studies, from static to dynamic studies,
and from decision- to game-theoretic studies. The theorem’s long proof, presented
in different appendices, makes use of key theorems by Kopylov (2007), Niiniluoto
(1972) and Wakker (1981).

2 A model of changing awareness

2.1 Variable Savage structures

Before introducing our own primitives, I recall Savage’s original primitives:

Definition 1 A Savage structure is a triple (X,S,7) of a non-empty finite®
set X (of outcomes or consequences), a non-empty set S (of states), and a
(preference) relation - on the set of functions from S to X (acts).

I replace Savage’s fixed outcome/state spaces by context-dependent ones. This
leads to a family of Savage structures (X;, S, 7Z;) where ¢ ranges over an arbitrary
set of ‘contexts’. To be able to relate the subjective outcomes/states of each
context to objective ones, I take each X; to partition (coarsen) some underlying set
of ‘objective’ outcomes, and each S; to partition (coarsen) some underlying set of
‘objective’ states.® This captures the ‘objective world” and the agent’s (changing)
awareness of it. Formally:

Definition 2 A wvariable Savage structure is a family of Savage structures
(X4, Sty Zt)ier indezed by some non-empty set T (of contexts), such that

e cach Xy is a partition of some set (of objective outcomes encompassed
in context t),

e cach S; is a partition of some set (of objective states encompassed in
context t).

®Savage in fact did not impose finiteness. I add finiteness for simplicity.
6 A partition of a set is a set of non-empty, pairwise exclusive and exhaustive subsets.

)



An objective outcome/state simpliciter is an objective outcome/state encom-
passed in at least one context.

From now on, let (X, S;, 7 )ier be a given variable Savage structure. Let:

F, .= X} acts conceived in context t)

(
X; := set partitioned by X; (objective outcomes encompassed in context t)
Si := set partitioned by S;  (objective states encompassed in context )
X = Uper Xy (objective outcomes)
S = UserSy (
(

F:=X5

objective states)
objective acts).

The spaces X; and S; could reflect the framing at work in context ¢. This framing
renders certain outcome/state concepts salient, e.g., through a mode of presenta-
tion or a level of descriptive detail.” The framing-based interpretation follows Ahn
and Ergin (2010), extending their idea to outcome framing as well as state fram-
ing. Framing is only one of many possible sources/interpretations of the agent’s
concepts and hence of the spaces X; and S;; see Section 2.3.

Here is a two-context example corresponding exactly to Figure 1: T' = {¢,t'},
Xe = {{z, 9} {21}, S = {{a, b}, {c}}, Xo = {{o, 2}, {y, w}}, and Sy = {{a, b}, {c, d}};
so Xy = {x,y,2}, S = {a,b,c}, X =Xy = {x,y,z,w}, and S = Sy = {a,b,c,d}.
The agent’s outcome/state spaces are non-fine in both contexts, and non-exhaustive
only in context f. In general, the smaller the sets in X; and S; are, the finer the
agent’s outcome/state concepts are, up to the point of singleton sets (full refine-
ment); and the larger the sets X; and S; are, the more exhaustive these concepts
are, up to the entire sets X and S (full exhaustiveness).

When does the agent have full awareness of some type at some level?

Definition 3 The variable Savage structure (X, Sy, 724 )ter has

(a) exhaustive outcomes if in all contexts t we have X; = X

(b) erhaustive states if in all contexts t we have S; =S,

(c) fine outcomes if in all contexts t each outcome x € X, is singleton,
(d) fine states if in all contexts t each state a € S; is singleton.

Our theorem will simplify under exhaustive states, and simplify differently
under fine states. Here are examples demonstrating the flexibility of our model:

e Savage: T contains a single context t,. Our variable structure reduces to a

classic Savage structure (X, S, 72) := (X4, Sty 251, )- Objective outcomes and

"If the agent is presented car insurance policies in terms of their net benefit as a function of the
number (up to 10) of accidents, then S; contains the 11 events ‘n accidents’ for n = 0,1, ..., 10, and
X, contains the 11 net-benefit outcomes; another context ¢’ with a different mode of presentation

will induce different spaces Sy and X/.



states are not needed: w.l.o.g. we can, like Savage, let X and S be primitive
sets rather than any partitions.

e Stable outcome awareness: All contexts ¢ lead to the same outcome space
X; = X, which we may take as a primitive set rather than any partition.
One might then identify contexts with state spaces (state awareness levels);
so T contains the ‘possible/feasible’ state spaces and S; :=t for all t € T'.

e Stable state awareness: All contexts ¢ lead to the same state space S; = S,
which we may take to be a primitive set rather than a partition. One might
then identify contexts with outcome spaces (outcome awareness levels), so
that T contains the ‘possible/feasible’ outcome spaces and X; := ¢ for all
teT.

e Fully variable awareness: All logically possible awareness states occur:
for all partitions X of X and S of S, where |X| < oo, there is a context
t € T in which X; = X and S; = S. (To allow non-exhaustive awareness,
one should extend the quantification to partitions of any non-empty subset
of X or S, respectively.) This permits arbitrary ways to conceive the world.
If one identifies contexts with awareness levels, T' becomes the set of all pairs
t = (X, S) of a finite partition of X and a partition of S, where X; := X and
S =S5.

e Finite awareness: All spaces X; and S; (and so all act sets F}) are finite.
The agent can only conceive finitely many things at a time.

2.2 Excursion: preferences over subjective or objective

acts?

Some might prefer working with preferences over objective rather than subjective
acts (I do not, because the objects of preferences should be things the agent can
conceive, in line with my mentalistic rather than behaviouristic position on eco-
nomic modelling; see Dietrich and List 2016a, 2016b). One can indeed recast each
preference relation 7—; in our variable Savage structure as one over objective acts,
more precisely over objective acts that are representable (measurable) in context
t: just identify a preference between two subjective acts in F; with a preference
between any two objective acts represented by them in context ¢, respectively. If
wished, one could thus replace the relations 7, on F; (¢t € T') by corresponding
relations on {f € F : f is representable in F;} (t € T), or at least interpret the
former relations as shorthands for the latter relations. But what exactly is the
subjective representation of an objective act?

Definition 4 Given a contextt € T,

e the subjectivization of an objective outcome v € X;, denoted x;, is the
subjective outcome in Xy containing x (the assignment x +— x; maps X; onto

7



Xt))
e the subjectivization of an objective state a € S;, denoted ay, is the subjective

state in Sy containing a (the assignment a — a; maps S; onto Sy),

Definition 5 The (subjective) representation of an objective act f € F in a
context t € T is the unique act f; € F, (if existent) which matches f modulo sub-
jectivization, in that whenever a' € Sy subjectivizes a € S; (i.e., a € a'), then fi(a)
subjectivizes f(a) (i.e., f(a) € fi(a')). An f € F is (subjectively) representable

in context t if its representation f; exists.

Remark 1 (representability as measurability) Given a contextt € T,

e under exhaustive states and outcomes, an objective act is representable if and
only if it is (St, X¢)-measurable,

e in general, an objective act is representable if and only if its restriction to S;
maps into X; and is (S, X;)-measurable.t

v

St St

state subjectivization

f ft

outcome subjectivization

Xt > Xt

Figure 2: An objective act f : S — X and its representation f; : S; — X; (note
that f indeed maps S; into X; by Remark 2)

Remark 2 For any objective act f € F representable in given a context t, the
diagram in Figure 2 is
(i) well-defined, i.e., f(S;) C Xy (a trivial condition under exhaustive outcomes),
(i1) commutative, i.e., [f(a)]; = fi(ay) for all a € S;.

As an illustration, consider an objective act f that makes the agent rich if
a coin lands heads (and poor otherwise), and that might also do many other
things, such as making him sick in the event of cold weather. In context ¢ the
agent conceives only ‘wealth outcomes’ and ‘coin states: X; = {rich, poor} and
Sy = {heads,tails}, where rich and poor are the outcomes (sets of objective
outcomes) in which he is rich or poor respectively, and heads and tails are the
states (sets of objective states) in which the coin lands heads or tails respectively.
Then f is represented by the subjective act f; that maps heads to rich and tails
to poor. But if instead X; = {rich,poor} and S; = {S}, the state concept no
longer captures the coin toss, and f is no longer representable.

8(S;, X¢)-measurability means that members of the same a € S; are mapped into the same
x € X3, or equivalently, that the inverse image of any = € X is a union of zero or more a € S;.
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2.3 Three clarifying interpretive remarks

1. One can take the spaces X; and S; (t € T') to represent the awareness/concepts/ontology
ascribed to the agent by the observer: they reflect how we take him to perceive the
world, and hence they embody our hypothesis (or theory, stipulation, conjecture
etc.) about the agent’s perception. This ascription or hypothesis could be guided
by: (i) the framing of outcomes and states; or (ii) the awareness/concepts as re-
ported by the agent when asked by the analyst about his current outcome/state
concepts; or (iii) the modeller’s own common sense or intuition; or (iv) neuro-
physiological evidence about how the context affects the cognitive system; or (v)
the sort of options that are feasible in context t (here X; and S; are constructed
such that all feasible options become representable as subjective acts, in a sense
made precise in Section 2.7); or (vi) observed choices (among objective acts) which
reveals the agent’s awareness, in a sense that can be made precise (here X; and S,
are constructed so as to be fine enough to distinguish between those objective acts
between which observed choices distinguish). There is also a completely different
interpretation: the spaces X; and S; could represent the agent’s real rather than
ascribed concepts in context ¢, adopting a first-person rather than third-person
perspective. The literature routinely uses (and switches between) both types of
interpretation of Savage’s outcomes and states — i.e., interpretations in terms of
the agent’s ascribed or real ontology, i.e., of either our assumption about his con-
cepts or his real concepts possibly unknown to us. Savage himself had the second
interpretation in mind; he focused on rationality from a first-person perspective.
By contrast, mainstream behaviourist economics favours the first interpretation,
to ensure observability of all primitives.

2. By modelling subjective outcomes/states as sets of objective ones, I by no
means suggest that the agent conceives outcomes/states in terms of (complex)
sets. He may conceive them as indecomposable primitives. He may for instance
conceive the outcome ‘having close friends’ in complete unawareness of a huge
(infinite) set of underlying objective outcomes. Only our third-person perspective
identifies subjective outcomes/states with sets of objective ones.

3. One can think of a context t € T" in broadly two ways. Fither t represents
the environment (or frame, time point, decision node in a decision/game tree,
...) which triggers or causes the agent’s awareness state (X¢,S;) and preference
relation 7Z;. Or t is ‘only’ an index; t can then be identified with the agent’s
awareness state itself (under a minor loss of generality”), so that ¢ is a space pair
(X,S), where X; := X and S; := S. In the first case (X;, Sy, ZZt)ier captures
how awareness and preferences react causally to the environment. In the second

9The loss of generality is that preference must then be determined (fully) by awareness:
(X, St) = (Xyp, S¢) = 7= . This restriction is minor, since even without making it, it later

follows from Axiom 2 (see Proposition 1).



case (Xy, S, 7ot)ter is simply a summary of all ‘possible’ or ‘feasible’ awareness-
preference states (X, S, 77) of the agent; the structure (X, Sy, 72t )ier could then
be abbreviated as (Z:):er, as each context t = (X, S) already encodes the spaces

~t

Xy =X and S; := 5.

2.4 The objective/subjective terminology and notation

We must carefully distinguish between objective and subjective descriptions. By
default descriptions are subjective; so I often drop ‘subjective’. Formally:

e An objective outcome/state/act/event is a member of X / S / F = X5
/ 25.

e A (subjective) outcome/state/act/event conceived in context t (&
T) is a member of X, / S, | F; = X}t ] 2%.

e A (subjective) outcome/state/act/event simpliciter (without reference
to a context) is a member of some X; / S; /| Fy / 2% (t € T).

e The (subjective) outcome/state space in context t is X; / S;.
e A (subjective) outcome/state space simpliciter is some X; / S; (t € T').
e The objectivization of an event A C S, (¢t € T'), denoted A*, is the objective
event partitioned by A; A and A* are said to correspond to each other.
e Events A and B from possibly different contexts are (objectively) equi-
valent if A* = B*.

e Any act f € F, (t € T) induces a function on S; rather than S;, denoted
f* and given by f*(a) := f(a;) (where a; is a’s subjectivization, given by
a€a; €8;); fand f* are said to correspond to each other.

2.5 Expected-utility rationalizations and revision rules

We can apply the classical expected-utility paradigm within each context.

Definition 6 An expected-utility (‘EU’) rationalization/representation of
the variable Savage structure (Xy, Sy, 7t )ier 18 a system (Uy, P,)er of non-constant
‘wtility’ functions Uy : X; — R and probability measures’® P, : 25 — [0,1] such
that

f g EpUl(f) > EpUg) for all contextst € T and acts f,g € F}.

Our axioms will imply existence of an (essentially unique) EU rationalization
(Ut, Py)ier whose utilities and probabilities obey three revision rules. The first two
of them are easily stated:

10The term ‘probability measure’ is used throughout in its finitely additive sense.
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R1: Any U, is an increasing affine transformation of any Uy on the domain over-
lap Xt N Xt/ .

R2: Any P, is proportional to any Py on the domain overlap 25"

Under R1 and R2, utilities are affinely rescaled and probabilities are proportionally
rescaled where concepts are stable. So if the agent, say, splits an outcome = € X;
into y and z, resulting in a context ¢’ with Xy = (X;\{z}) U {y, 2} and Sy = S,
then Py = P, by R2, and utilities are essentially unchanged on X;\{z} by R1.

R1 and R2 are in contrast with two stronger conditions that forbid revisions:

R1+: Any U, equals any Uy on the domain overlap X; N Xy (‘stable utilities’).
R2+: Any P, equals any Py on the domain overlap 257 (‘stable probabilities’).

Neither R2 nor even R2+ prevents the agent from attaching a different prob-
ability to an event A C S; conceived in a context ¢t and an objectively equival-
ent event A’ C Sy conceived in another context ¢'. This happens if beliefs are
description-sensitive, i.e., dependent on how objective events are perceived sub-
jectively. Imagine that in context ¢ the agent conceives the fine states {a} and {b}
and hence the event A = {{a}, {b}}, while in context t" he conceives the coarser
state {a,b} and hence the event A’ = {{a,b}}. Although A and A’ represent the
same objective event {a,b}, the agent might in context ¢ find A unlikely on the
grounds that {a} and {b} each appear implausible, while in context ¢’ finding A’
likely because he fails to analyse this event in terms of its implausible subcases.!!
The following revision rule — a significant strengthening of R2 and R2+ — excludes
such description-sensitivity:

R2++: If events A C Sy and A" C Sy (t,t' € T) are objectively equivalent, then
they get the same probability, i.e., A* = A* = P,(A) = Py(A") (‘objectively
stable probabilities’).

I now give three examples. All of them assume an EU rationalization (U, P;)ser.
The first two concern utilities, and the last one concerns probabilities.

Example 1: stable utilities. Objective outcomes are numbers between 0 and
100: X = [0,100). The agent has a coarse conception of numbers, i.e., conceives
‘vague numbers’ in the form of intervals. So each outcome space X; consists of
pairwise disjoint intervals. If for instance X; = {[k,k+1) : k =0, ...,99}, then the
agent effectively ignores decimals, i.e., identifies any numbers having the same non-
decimal digits. How might he assign utilities? Suppose all utilities are reducible

" Concretely, a could stand for country 1 attacking country 2, and b for 2 attacking 1. In
context t the agent finds event A = {{a}, {b}} unlikely: he reasons that {a} and {b} are each
implausible as each country is unlikely to attack. In context ¢’, he finds event A" = {{a, b} } likely
on unsophisticated grounds: he treats A’ as a primitive scenario of ‘war’, which seems likely to
him, as he fails to realise that a war requires an (unlikely) attack by either country.
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to a fixed utility function of objective states U : X — R, in one of the following
ways. For any context ¢ and any outcome I € X; (an interval),

e U;(I) = U(m) where m is a ‘representative’ or ‘rounded’ number defined, e.g.,

inf I+supl .,
o

e U;(I) = u where u is a ‘representative’ or ‘rounded’ utility level defined, e.g.,

. inf,e; U(z)+sup,c; U(2)
as inf,e; U(2) or sup,; U(z) or TR :

as I’s lower boundary inf I or upper boundary sup I or midpoint

In all these cases utility revision satisfies not just R1, but even R1+ (stable util-
ities), since U;(I) depends only on I, not on the context ¢.'?

Example 2: changing utilities. As in the previous example, let X = [0, 100),
and let each X; consist of pairwise disjoint intervals. But utilities are no longer
reducible to a fixed utility function on X. Instead they are formed as follows.
In any context ¢, the outcomes (intervals) in X; are put into a linear order
Ii, I, ..., I, such that I;’s members are smaller than I5’s, which are smaller than
I3’s, etc., where n = |X;|. Let Uy(lh) = 1, Uy(lz) = 2, ..., Uy(L,) = n. This
leads to utility revisions: for instance, the same outcome [50,100) gets utility
U,([50,100)) = 2 when X, = {[0,50), [50,100)}, but utility Uy ([50,100)) = 3
when X = {[0,10), [10,50), [50,100)}. Neither R1+ nor even R1 needs to hold:
two utility functions U; and Uy need not be increasing affine transformations of
one another on X; N Xy. However, R1 does hold if never more than 3 outcomes
are conceived (i.e., |X;| < 3 for all ¢ € T'), or never more than 4 outcomes are
conceived and outcome awareness is exhaustive (i.e., each X, partitions the full
interval X = [0,100)). The reason is that in these cases any two spaces X, Xy
either share at most two elements (so that U, is an increasing affine transformation
of Uy on X; N Xy), or coincide (so that U; = Uy).

Example 3: objectively stable beliefs. Let the source of uncertainty be purely
objective. That is, let S contain the outcomes of some random experiment, e.g.,
coin tossing sequences or roulette outcomes. We capture the objective risk by
a probability measure 7 on some algebra R on S. In each context ¢ the agent
conceives only finitely many states: S; is a finite partition of S into members of
R. (If S contains coin tossing sequences and in context ¢ only the first three tosses
are conceived, then states in S; correspond to triples of outcomes of the first three
tosses.) Despite his limited state conception, let the agent give the true (objective)
probability to those states he conceives: P;(s) = 7(s) for all contexts ¢ and states
s € S; . Then clearly R2++ (and thus R2 and R2+) hold.

1215 it plausible to reduce all U;s to a fixed function U on X? One might object that agents
with limited awareness do not conceive the objects X and U, and so cannot consciously calculate
values like U(inf I) or inf,c; U(z); the utility model would thus have an ‘as if’ status, hence
become questionable.
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2.6 Tighter EU rationalizations and their revision rules

I now sketch tighter kinds of EU rationalizations with fewer degrees of freedom:
‘stable’, ‘unified’, and ‘classical’ EU rationalizations. In each case some of the
revision rules R1, R1+, R2, R2+ and R2++ come for granted. The unified and
classical cases can be linked to Ahn-Ergin’s (2010) central rationalization con-
cepts.!?

Stable and unified EU rationalizations. I begin with utilities, and then turn
to probabilities.

Definition 7 A family (Uy)ier of utility functions Uy, on X, is stable if it is given
by a single function U on Uier Xy in that each Uy matches U on Xy, i.e., Uy = Ulx,.

Remark 3 Stability of (U;)er is equivalent to R1+, so implies R1.

Definition 8 A family (P,)er of probability functions P, on 25 is
e stable if it is given by a single function P on U2t in that each P, is equal
to P on 2%, i.e., P, = Plys,,
o unified if more generally it is given by a single function P on Uer2 in
that each P; is proportional to P on 2%, i.e., P, < Plys, .t

Remark 4 Stability of (P,)ier is equivalent to R2+, which implies unification,

which in turn implies R2.

Definition 9 If an EU rationalization (U, P,)ier is stable in its utility functions
(given by U ) and stable or more generally unified in its probability functions (given
by P), then (U, P;)ier — or in short (U, P) —is a stable EU rationalization or
more generally unified EU rationalization, respectivey.'

Remark 5 An EU rationalization (Uy, Py)ier is

e stable if and only if R1+ and R2+ hold,
e unified if R1+ and R2+ hold, and only if R1+ and R2 hold.

I3If Ahn-Ergin’s framework is recast within ours, it corresponds to the special case of a fixed
outcome space X; = X and exhaustive and finite state spaces S;. In this case, our unified and
classical EU rationalizations reduce essentially to their ‘partition-dependent’ resp. ‘partition-
independent’ EU representations (partly because the conditions which unification and classicality
impose on the functions U; reduce to Ahn-Ergin’s assumption of a fixed utility function).

“Even if P, is just proportional to P on 2%, P fully determines P, given that Pi(S:) =1.

1°One might also consider EU rationalizations which are stable only in utilities (short-hand:
(U, (P¢)teT)), or stable or more generally unified only in probabilities (short-hand: ((U)ter, P)).
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Classical EU rationalizations. Stability of an EU rationalization is a big (and
questionable) step towards classical rationality. But it falls short of it, as the agent
can display major forms of dynamic inconsistency. For instance, as the context
changes from ¢ to ¢’ and two old outcomes x,y € X; get merged into a single one
xUy € Xy, the utility Uy (z U y) could exceed the utilities U;(x) and U;(y) of
both suboutcomes — a ‘dynamic dominance violation’. Similarly, as two old states
a,b € S; get merged into a single one aUb € Sy, the probability P (aUb) can differ
from P;(a) + P:(b) — a ‘dynamic additivity violation’. The natural explanation of
such violations is, of course, that in context ¢’ the agent no longer conceives the
‘subcases’ of xtUy and aUb, as xUy and aUb appear as indecomposable primitives.

I now define ‘classical’ EU rationalizations. They exclude any such dynamic
inconsistency, and render the agent classical in all respects — except from awareness
changes (imposed exogenously via the variable Savage structure). Such an ‘almost
classical’ agent ranks subjective acts as if he conceived the underlying objective
outcomes and states: although he evaluates subjective entities (outcomes, states
and acts), he does so objectively, by taking into account the underlying objective
outcomes and states. One may legitimately question the plausibility of such a
hybrid agent: why should someone who can come up with objective evaluations fail
to come up with objective outcomes, states and acts in the first place? The point
of defining classical EU rationalizations is not to defend ‘objective evaluations of
subjective objects’ as genuinely realistic, but to spell out the classical benchmark
from which our less classical rationalizations depart.

Let us start with classical probabilities, before turning to classical utilities.
From an orthodox rationality perspective, it should not matter how objective
events are subjectively represented (described, framed), in the following sense:

Definition 10 A family (P,)ier of probability functions P, on 2% is classical if
the probability of any event A depends only on its objectivization A*, i.e., if (P;)ier
is given by a single function T on the set Uyer{ A* : A € 25t} of objectivized events:

P,(A) = w(A") for all contexts t € T and events A C S;.

Remark 6 Classicality of (P,)ier is equivalent to R2++ (objectively stable prob-
abilities), hence implies R2 and R2+.

In Example 3, (P,)er is classical, and generated precisely by the example’s
true probability measure 7 (restricted to Ugep{A* : A € 25}).

Turning to classical utilities, imagine in a context ¢ the agent conceives the
outcome {z,y}, which has two underlying objective outcomes; {z,y} might stand
for ‘rich’, x for ‘very rich’, and y for ‘moderately rich’. Under the classical expected-
utility paradigm, composite prospects are systematically evaluated in terms of the
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expected/average utility of their subprospects. Accordingly, the prospect {z,y} is
to be evaluated in terms of the expected/average utility of  and y. This requires
assigning utilities and probabilities to objective outcomes. Invoking probabilities
at the outcome level is unconventional — but it is natural and necessary if coarse
outcomes should be evaluated classically by the expected utility of the objective
(sub)outcomes. This motivates the following definition:

Definition 11 A family (Uy)er of utility functions Uy on X, is classical if the
utility of any outcome is the expected utility (given that outcome) of the objective

outcome, i.e., if
U(z) = E,(V|x) for all contexts t € T and outcomes x € Xy, (1)

relative to some fized utility function of objective outcomes V : X — R and some

fized probability measure p1 on (some algebra on) X.16

Remark 7 If (U;)er is classical, then it is stable (so obeys R1+), as it is given
by the single function U mapping x € Uer X, to E,(V|z) (with V and p as in
Definition 11).

Classicality of utilities goes far beyond stability, so beyond the rule R1+. It
implies a notable property (of which R1+ is the special case in which n = 1):

Remark 8 Classicality of (Uy)ier implies that whenever the context changes from
t tot' and a new outcome x € Xy is partitionable into old (sub)outcomes 1, ..., x, €
Xy, then the new utility of x 1s a weighted average of the old utilities of x1, ..., Ty:
Up(z) =30 plxi|z)Ui(z;), with p as in Definition 11.

Definition 12 If an EU rationalization (Uy, P)ier is classical both in its util-
ity functions (given by V' and p) and its probability functions (given by m), then

(Uy, P)ier — or in short (V, u, m) —is a classical EU rationalization.'”

Remark 9 Classical EU rationalizations (U, P;)ier are stable (hence unified), by
Remarks 5, 6 and 7.

Classical EU rationalizations perform a universal reduction to the objective
level. Yet, as mentioned, it is hard to imagine how an agent with limited aware-
ness could evaluate outcomes and states as if he were aware of underlying objective

In particular, for each z € Uier Xy, B, (V) is well-defined, meaning that (1) p(-|z) is well-
defined, i.e., p is defined and non-zero at z, and (2) V has a finite expectation w.r.t. u(-|z) (e.g.,

V is bounded on z and measurable w.r.t. the algebra on which p is defined).
170ne might consider EU rationalizations (Ut, Py)ter which are classical only in utilities (short-

hand: (V, p, (Pt)ter)) or only in probabilities (short-hand: ((Uy)ter, 7)).
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outcomes and states. In defence of classical EU rationalizations, one might try to
interpret them in a more literal and less as-if-like way. For that purpose ima-
gine all unawareness is non-radical: the agent has in principle mental access to
objective outcomes and states, but for some reason (such as simplicity) conceives
outcomes and states more coarsely than he could have. Yet when assigning utilit-
ies/probabilities to his coarse outcomes/events he suddenly becomes sophisticated
and goes down to objective outcomes/states. I leave it open whether this back-
and-forth between a coarse and a fine perspective is psychologically plausible —
and if not, whether an ‘as if’ interpretation is plausible. Figure 3 summarizes the

utility revision arbitrary affine no revision: objectively no revision:
policy: revision revision: R1 Ri+ Rem. 6 (partial charact.)
utility general (Up)er stable (Up)ger classical (Ug)¢er
representation: short-hand: U short-hand: (V, )
probability arbitrary proportional - 10 revision: objectively no
revision policy: revision revision: R2 R2+ revision: R2++
probability general (Py)ger unified (Py)ser stable (Py)per classical (Pp)¢er
representation: short-hand: P short-hand: P short-hand: ™

Figure 3: Revision policies for utilities/probabilities and corresponding represent-
ations of utilities/probabilities, from most general (left) to most specific (right)

various revision policies with their corresponding representations, in the order of

Y

increasing specificity. I insert ‘...” where a revision policy has no corresponding

representation or where a representation has no corresponding revision policy.

2.7 Excursion: unawareness, choice behaviour, and non-

representable options

Our model is easily connected to choice behaviour. Assume the agent finds himself
in a context ¢ € T and faces a choice between some concrete (pre-theoretic) options,
such as meals or holiday destinations. The modeller faces two possibilities: he
could model options either as subjective acts in F} or as objective acts in [F. Neither
possibility is generally superior: all depends on the intended level of description.
In the first case, the feasible set is a subset of F}, and the prediction is simply that

a most ~;-preferred member is chosen.

For the rest of this subsection, I assume the second case: let options be ob-
jective acts. So the feasible set is a subset of F, not F;. Which choice does =,
predict? It predicts that the agent chooses a feasible objective act whose subjective
representation in F; (see Definition 4) is most 7Z;-preferred. More precisely, our
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variable Savage structure (X, Sy, 72t )ier predicts that whenever in a context t € T
the agent has to choose from a set F C F of representable objective acts, then
he chooses an f € F such that f; =, ¢; for all ¢ € F. (This may lead to choice
reversals as the context changes; see Section 4.)

No prediction is made about choice from non-representable objective acts: the
model is silent on such choices. Does the model thereby miss out on many choice
situations? Perhaps not, because the mental process of forming outcome/state
concepts might (consciously or automatically) adapt these concepts to the feasible
options, to ensure representability. I call the agent — or more exactly his awareness
states (X3, S¢)ier — adaptive (to feasible options) if for each context ¢ all
objective acts that can be feasible in ¢ are representable in t.!* The idea is that
the agent forms awareness of a coin toss when and because some feasible objective
acts depend on it. Forming awareness is a costly mental activity, which is likely
to be guided by the needs of real choice situations, including the need to represent
feasible options. Adaptiveness can thus be viewed as a rationality requirement on
the agent’s concepts/awareness states.'

Is there any way to predict choices even when some feasible options are non-
representable, i.e., even without adaptiveness? There is indeed, if one is ready to
make one of two auxiliary assumptions: one could take non-representable options
to be ignored (‘not perceived’), or rather to be misrepresented (‘misperceived’).?

3 Six Savage-inspired axioms

Sections 3-5 temporarily assume ezhaustive states (see Definition 3). In fact, each
‘axiom’, ‘theorem’ or ‘proposition’, and most ‘definitions’ and ‘remarks’, also apply

18 A full-fledged definition could state as follows. Let choice situations be pairs (F,t) of a
non-empty menu F C F of (feasible) objective acts and a context or ‘frame’ ¢ € T (in which
the choice from F is made). Some choice situations occur, others do not. Let CS be the set of
occurring (or feasible) choice situations. Adaptiveness (to feasible options) means that for all
(F,t) € CS each f € F is representable in context ¢.

The agent’s awareness state (X¢,S;) can be ‘irrational’” in two distinct ways, the second way
being non-adaptiveness. (1) Outcomes may be too coarse to incorporate all relevant features of
objective outcomes that the agent would care about had he considered them (in the example at
the end of Section 2.2, health features are absent from X; = {rich, poor}, though presumably
relevant). (2) States may be too coarse (given the outcome space X;) for all feasible objective
acts to be representable (in the mentioned example, f is not representable if S; = {S}, given
that Xy = {rich, poor}). In (1) and (2) T assumed exhaustive states and outcomes, but the idea
can be generalized.

20Under the first hypothesis, the agent considers not the full feasible set, but only the subset
of representable feasible options (among which he picks an option whose representation is most
~-preferred). Under the second hypothesis, a non-representable feasible option f in F is not
ignored, but (mis)perceived as some subjective act in F; which fails to properly represent f.
Which is this subjective act? Here one would need to develop a theory of misrepresentation.
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to non-exhaustive states. The three exceptions — two definitions and one remark
— will be marked by ‘exh’. So ‘Definition 20,  applies only under exhaustive
states, but ‘Definition 13’ applies generally. For each exception (marked by ‘exh’),

a general re-statement is given in Section 6.

I now state six axioms which reduce to Savage’s axioms in the one-context case.

Standard notation: Let f4 be the restriction of function f to subdomain A.
For any object x and set S, let g be the function on S with constant value x.
For functions f and g on disjoint domains, fg is the function on the union of
domains matching f on f’s domain and g on ¢’s domain. Examples are ‘mixed’
acts fags,a € Fi, where f,ge Frand AC S, (teT).

A background assumption: Henceforth let the structure (X, St, 7¢)ier satisfy
independence between outcome and state awareness, so that the agent’s outcome
awareness and state awareness do not constrain one another. Formally: any occur-
ring outcome and state spaces X; and Sy (t,t' € T') can occur jointly, i.e., some
context " € T has Xy» = X; and Sy = Syt

I begin with the analogue of Savage’s first axiom:

Axiom 1 (weak order): For all contexts t € T, 7=, is a transitive and complete
relation (on F}).

Savage’s sure-thing principle requires that the preference between two acts only
depends on the acts’ outcomes at those states where they differ. This famous pos-
tulate can be rendered in two ways in our setting, by applying sure-thing reasoning
either only within each context, or even across contexts:

Axiom 2* (sure-thing principle, local version): For all contexts ¢ € T, acts
f7g7flag, € Ft7 and events A - St7 if fA = f,,47 ga = 9147 fSt\A = gs)\A and
fé’t\A = ggt\A’ then f =, 9 f 71 g

Axiom 2 (sure-thing principle, global version): For all contexts ¢,¢' € T,
acts f,g € Fy, and f’, ¢ € F,, and events conceived in both contexts A C S; NSy,

if fa=fh, 94 =g fsna =gspa and fg \ 4 = g, 4> then [ T g & [ Zv g
Remark 10 Aziom 2* is the restriction of Axiom 2 to the case t =t'.

How does Axiom 2 go beyond Axiom 2*? The preference between the two
acts is insensitive not just to the outcomes outside A, but also to the concep-
tion/awareness of states outside A, since S;\ A can differ from Sy \A. If two acts
agree when it doesn’t rain, then it does not matter whether the agent conceives

21 This excludes agents who conceive the outcome ‘I am popular’ only jointly with the state ‘I
win in the lottery’, or who conceive fine states only jointly with coarse outcomes.
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just one coarse ‘non-rainy state’ or 17 fine ‘non-rainy states’. Axiom 2 thus applies
sure-thing reasoning all the way through, regardless of barriers of context, i.e., of
the concept/awareness of irrelevant states.??

Axiom 2 is decomposable into two axioms, namely Axiom 2* and a new axiom
which requires the preference between acts f and g to be unchanged whenever the
agent reconceives (e.g., refines or coarsens) states at which f and g coincide. The
reconception of states of course leads f and g to be recast as acts f' and ¢’ defined
on the new state space. Formally:*

Axiom 2**: For all contexts t,t € T with set of common states A := S; N Sy,
if two acts f,g € F; coincide on S;\ A where they yield a constant outcome = €
X; N Xy, then f =, g & f' =y ¢, where " and ¢’ denote the acts in F;, which
respectively match f and g on A and both yield x on Sy \ A.

To paraphrase Axiom 2**, the preference between f and g does not change as
the states on which f and ¢ coincide are reconceived, so that f and g become f’
and ¢’. While in Axiom 2** f’ and ¢ are the direct counterparts of f and ¢ in
context t', in the sure-thing principle (Axiom 2 or 2*) f" and ¢’ are by no means
equivalent to f and ¢: their outcomes may have changed outside A.

Remark 11 Aziom 2** is the special case of Axiom 2 in which A = S; NSy and
in which fsaa and fét,\A (and thus gs,a and ggt,\A) all generate a same constant
outcome.

Compare the reasoning underlying Axiom 2** with the classical sure-thing
reasoning underlying Axiom 2*. In both cases, states on which f and g coincide
are deemed irrelevant to the preference between f and g, yet in two different senses:
either the outcomes at these states do not matter (Axiom 2*) or the awareness
of these states does not matter (Axiom 2**). The two modes of reasoning are
complementary. Together they yield Axiom 2:

Remark 12 Azioms 2* and 2** are jointly equivalent to Aziom 2.**

It is debatable whether Axiom 2 or 2* is the ‘right’ or ‘natural’ rendition of
Savage’s sure-thing principle in our framework of changing awareness. Axiom 2
builds in additional ‘rationality’ in the form of evaluative consistency across con-
texts; if such consistency is not viewed as an integral part of sure-thing reasoning,

22Replacing sure-thing reasoning by ambiguity aversion in our setting is an interesting avenue.

23 Axiom 2** is comparable to Karni-Viero’s (2013) awareness consistency axiom.

24Why do Axioms 2* and 2** jointly imply Axiom 2? Let t,t, f, g, f’,g" obey Axiom 2’s
premises. To show that f =, g & f' =¢ ¢/, fix an z € X; N Xp. Applying Axiom 2* on each
side, the claimed equivalence reduces to fazg,\a Z¢ gaTs,\a & quxst,\A T 91433St,\A7 which
holds by Axiom 2**. (Here A is a subset of S; NSy, the set denoted ‘A’ in Axiom 2**.)
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Axiom 2* is presumably the right rendition of sure-thing reasoning. By contrast,
Axiom 2 is the right rendition if one construes sure-thing reasoning as reasoning
which compares acts systematically and solely based on their outcomes where they
differ, so that the preference between any acts f and g is determined by (or, as
philosophers say, supervenes on) their restrictions f4 and g to the ‘disagreement
domain’ A :={a € S;: f(a) # g(a)}.*

I now extend four familiar Savagean notions to our setting:

Definition 13 (preferences over outcomes) In a context t € T, an outcome
x € X; is weakly preferred to another y € X, — written x 7=y y — if xs, 72t Ys,
(recall that xg, and ys, are constant acts defined on the state space S;).

Definition 14 (conditional preferences) In a contextt € T, an act f € F; is
weakly preferred to another g € F, given an event A C S; — written f 714 g
—if f' 7= ¢ for some (hence under Axiom 2 any) acts f',g € F, which agree
respectively with f and g on A and agree with each other on S;\ A.

Definition 15 (conditional preferences over outcomes) In a contextt € T,
an outcome x € X; is weakly preferred to another y € F;, given an event A C
Sy —written x i 4y — if T, Tea Ys,-

Definition 16 (null events) In a context t € T, an event A C S; is null if it
does not affect preferences, i.e., f ~; g whenever acts f, g € F; agree outside A.

I am ready to state the analogue of Savage’s third axiom:

Axiom 3 (state independence): For all contexts ¢t € T, outcomes z,y € X,
and non-null events A C Sy, x 72,4y © v 71 y.

A bet on an event is an act that yields a ‘good’ outcome =z if this event occurs
and a ‘bad’ outcome y otherwise. Savage’s fourth axiom requires preferences over
bets to be independent of the choice of x and y; the rationale is that such prefer-
ences are driven exclusively by the agent’s assessment of the relative likelihood of
the events on which bets are taken. Savage’s axiom can again be rendered as an
intra- or inter-context condition:

Axiom 4* (comparative probability, local version): For all contexts ¢ € T
events A, B C S;, and outcomes z =, y and 2’ =; ¥ in Xy, Tays,\a Tt TBYs,\B &

/ / / /
TAYs\A it TBYs,\B-*

25Such supervenience amounts to the existence of a fixed binary relation over ‘subacts’ >
(C UrerUacs, (X x X{1)) such that, for all contexts t € T and acts f,g € Fy, f 7t g < fa > ga,
where A :={a € S;: f(a) # g(a)}. This is in turn equivalent to Axiom 2.
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Axiom 4 (comparative probability, global version): For all contexts ¢,t' € T
with same state space S := S; = Sy, events A, B C S, and outcomes = >; y in X,

and 2’ =y ¥ in Xy, Tays\a Tt TBYS\B & x’/xyé\A =y xjgyg\B.
Remark 13 Axiom /* is the restriction of Axiom / to the case that t = t'.

I shall use Axiom 4 rather than 4*. Axiom 4 applies the reasoning underlying
Savage’s fourth axiom across barriers of context. Yet Axiom 4 is only a ‘mildly
global