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Abstract

This paper proposes a simple unified framework of choice under changing aware-

ness, addressing both outcome awareness and (nature) state awareness, and both

how fine and how exhaustive the awareness is. Six axioms characterize an (essen-

tially unique) expected-utility rationalization of preferences, in which utilities and

probabilities are revised according to three revision rules when awareness changes:

(R1) utilities of unaffected outcomes are transformed affinely; (R2) probabilities of

unaffected events are transformed proportionally; (R3) enough probabilities ‘ob-

jectively’ never change (they represent revealed objective risk). Savage’s Theorem

is a special case of the theorem, namely the special case of fixed awareness, in which

our axioms reduce to Savage’s axioms while R1 and R2 hold trivially and R3 re-

duces to Savage’s requirement of atomless probabilities. Rule R2 parallels Karni

and Viero’s (2013) ‘reverse Bayesianism’ and Ahn and Ergin’s (2010) ‘partition-

dependence’. The theorem draws mathematically on Kopylov (2007), Niiniluoto

(1972) and Wakker (1981). (JEL codes: D81, D83.)

Keywords: Decision under uncertainty, outcome unawareness versus state un-

awareness, non-fine versus non-exhaustive awareness, utility revision versus prob-

ability revision, small worlds versus grand worlds

1 Introduction

Savage’s (1954) expected-utility framework is the cornerstone of modern decision

theory. A widely recognized problem is that Savage relies on sophisticated and

stable concepts of outcomes and (nature) states: ideally, outcomes always capture

everything that matters ultimately, and states always capture everything that

influences outcomes of actions.2 In real life, an agent’s concepts or ‘awareness’ can

1Paris School of Economics & CNRS; fd@franzdietrich.net; www.franzdietrich.net.
2This ideal translates partly into Savage’s formal analysis: his axioms imply high state soph-

istication (i.e., infinitely many states), while permitting low outcome sophistication (i.e., possibly

just two outcomes). So Savage’s formal model can handle an unsophisticated outcome concept,

but neither an unsophisticated state concept, nor changing state or outcome concepts.
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be limited at two levels, and in two ways. It can be limited at the outcome or

state level, and it can be non-fine (coarse) or non-exhaustive (domain-restricted).

A social planner deciding where to build a new nuclear power plant on his island

has a non-exhaustive state concept if he fails to foresee some contingencies such

as a tsunami. He has a non-fine state concept if he conceives a tsunami as a

primitive possibility rather than decomposing it into the (sub)possibilities of a

tsunami arriving from the east, west, north, or south. These are examples of

state unawareness; analogous examples exist for outcome unawareness. Figure 1
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Figure 1: An objective act (left) and its two subjective representations  (middle)

and  (right) under two different awareness levels (indicated by circles)

shows a situation where from an omniscient third-person perspective there are four

objective states     and four objective outcomes    . The left-hand plot

shows an objective act whose outcome is  under state  and is  otherwise. The

middle and right-hand plots show two subjective awareness levels of the agent who

both times conceives only two outcomes and two states; each subjective outcome

(or state) is given by a set of one or more objective outcomes (or states), indicated

by a circle. In the middle plot, the agent lacks a fine awareness of outcomes and

states:  and  are merged into the same subjective outcome, and  and  into

the same subjective state. He also lacks an exhaustive awareness of outcomes and

states:  and  are ignored, i.e., absent from all subjective outcomes or states. The

mentioned objective act is conceived as an act  mapping { } to {}, and {} to
{ }. In the right-hand plot, awareness is still not fine, but it is exhaustive, both
at the outcome and state level. The act is now reconceived as a constant act 

which yields outcome { } at both subjective states { } and { }. One might
compare our objective and subjective states with Savage’s (1954) grand-world and

small-world states, respectively, although we allow changes in subjective states

while Savage takes both types of states to be fixed.

An agent with an expected-utility rationalization does in each awareness state

or context hold (i) a utility function over currently conceived subjective outcomes

and (ii) a probability function over currently conceived subjective states. So in the

awareness state shown in the middle of Figure 1 the agent assigns utilities only to

the subjective outcomes { } and {}, and probabilities only to the subjective
states { } and {}. I will consider revision rules governing the change in utilities
and probabilities as the agent’s awareness or concepts chage. The first two rules
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are:

R1: Utilities of preserved subjective outcomes are transformed in an increasing

affine way.

R2: Probabilities of preserved subjective events are transformed proportionally.

These rules are vacuous when applied to the change from the middle awareness

state in Figure 1 to the right one, since no subjective outcome and only one

subjective state (i.e., { }) is preserved. But now assume the middle awareness
state changes differently: all existing subjective outcomes and states are preserved,

and the new ones {} and {} are added. Then R2 requires the new probabilities of
{ } and {} to be proportional to the old ones, and R1 requires the new utilities
of { } and {} to be an increasing transformation of the old ones (‘affineness’
is vacuous in case of only two preserved outcomes).

There is a clear need for a generalization of Savage’s expected-utility theory so

as to cope with changes in awareness of the various sorts. If such a generalization

has not yet been offered, it is perhaps because of two obstacles. One is the liter-

ature’s almost exclusive focus on state unawareness; I hope to raise ‘awareness’ of

outcome unawareness. Another obstacle is Savage’s high demands of state soph-

istication which go against the idea of state unawareness; we will find a way to

require less state sophistication, allowing for finite state spaces.

I shall offer a Savagean expected-utility (‘EU’) theory under changing aware-

ness, with ‘rational’ revision of utilities and probabilities. I take the agent to be

classical in all respects except from changing awareness (future research might

explore non-EU preferences under changing awareness and/or boundedly rational

revision rules). I work within a simple unified model of changing awareness, captur-

ing changes in outcome and state awareness, and in refinement and exhaustiveness.

Six axioms are then introduced, and shown to characterize an EU agent who, un-

der any change in awareness, updates his utilities and probabilities according to

the rules R1 and R2 and a third rule stated later. Probabilities are unique, and

utilities are unique up to increasing affine rescaling. Utility revision is a genuine

necessity: utilities cannot generally be scaled such that R1’s transformation is al-

ways the identity transformation. The theorem generalizes Savage’s Theorem: it

reduces to it in the limiting case of stable awareness, as our axioms then reduce to

Savage’s axioms, while rules R1 and R2 hold trivially and the third rule reduces

to Savage’s atomlessness condition on beliefs.

The framework allows for different interpretations. For instance, the agent’s

awareness level could have different sources; one of them is the framing of the

decision problem. Also, unawareness could be of radical and non-radical type.

Radical unawareness of X is an in-principle inability to imagine or represent X. As

yet unexperienced dimensions of reality or undiscovered phenomena presumably
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fall under radical unawareness. Non-radical unawareness of X means that we

merely do not consider X, be it because we set X aside on purpose or overlook X

by mistake. Although we are in principle able to consider or understand X, we

leave X aside — either because X is not worth considering due to mental costs,

or because X escapes our attention due to framing or other circumstances. For

instance, in a cooking choice we ignore a coin toss just because nothing hinges on

it, and forget to ask how salty the dish will taste out of distraction; but we are

radically unaware of tastes and flavours we have never experienced.

Choice theorists have tackled unawareness in different ways. The agent’s

(un)awareness level can be an input or an output of the analysis: it can be an

exogenous starting point which is assumed, or a feature which should be revealed

by observed behaviour. Recent examples of the ‘revealed (un)awareness’ approach

are Schipper (2013) and Kochov (2016).3 My model follows the ‘exogenous aware-

ness’ approach, just like Ahn-Ergin’s (2010) model of framed contingencies and

Karni-Viero’s (2013) model of growing awareness. How does my model relate to

these two seminal contributions? Working in an Anscombe-Aumann-type frame-

work, Ahn-Ergin assume that each of various possible ‘framings’ of the relevant

contingencies leads to a particular partition of the objective state space (repres-

enting the agent’s state concept), and to a particular preference relation over those

acts which are measurable relative to that partition. Under plausible axioms on

partition-dependent preferences, they derive a compact EU representation with

fixed utilities and partition-dependent probabilities. The systematic way in which

these probabilities change with the partition implies our rule R2 (after suitable

translations). Karni-Viero, by contrast, model the discovery of new acts, out-

comes, and act-outcome links. They work in a non-standard framework which

takes acts as primitive objects and states as functions from acts to outcomes (fol-

lowing Schmeidler and Wakker 1987 and Karni and Schmeidler 1991). They char-

acterize preference change under growing awareness, using various combinations of

axioms. A key finding is that probabilities are revised in a reverse Bayesian way,

a property once again related to our revision rule R2.

The current analysis differs strongly fromAhn-Ergin’s and Karni-Viero’s. I now

mention some differences. I analyse awareness change at both levels (outcomes and

states) and of both kinds (refinement and exhaustiveness), while Ahn-Ergin limit

attention to changes in state refinement (with fixed state exhaustiveness and fixed

outcome awareness), and Karni-Viero assume fixed outcome refinement.4 Ahn-

Ergin and Karni-Viero find that only probabilities are revised, yet I find that also

3Schipper takes unawareness of an event X to be revealed via nullness of both X and X’s

negation. Kochov studies revealed unawareness of future contingencies in a dynamic setting.
4Karni-Viero do capture changes in outcome exhaustiveness, through the discovery of new

outcomes. Changes in state awareness are captured indirectly: the discovery of new acts resp.

outcomes effectively renders states finer resp. more exhaustive.

4



utilities are revised. Ahn-Ergin and Karni-Viero introduce lotteries as primitives

(following Anscombe and Aumann 1963), while I invoke no exogenous objective

probabilities (following Savage 1954). Ahn-Ergin and Karni-Viero exclude the

classical base-line case of ‘state sophistication’ with an infinite state space, while

I allow that ‘state sophistication’ is reached sometimes, or never, or always; this

flexibility is crucial for ‘generalizing Savage’.

In the background of the paper is a vast and active literature on unaware-

ness (e.g., Dekel, Lipman and Rustichini 1998, Halpern 2001, Heifetz, Meier and

Schipper 2006, Halpern and Rego 2008, Hill 2010, Pivato and Vergopoulos 2015,

Karni and Viero 2015). I do not attempt to review this diverse body of work,

ranging from epistemic to choice-theoretic studies, from static to dynamic studies,

and from decision- to game-theoretic studies. The theorem’s long proof, presented

in different appendices, makes use of key theorems by Kopylov (2007), Niiniluoto

(1972) and Wakker (1981).

2 A model of changing awareness

2.1 Variable Savage structures

Before introducing our own primitives, I recall Savage’s original primitives:

Definition 1 A Savage structure is a triple (%) of a non-empty finite5
set  (of outcomes or consequences), a non-empty set  (of states), and a

(preference) relation % on the set of functions from  to  (acts).

I replace Savage’s fixed outcome/state spaces by context-dependent ones. This

leads to a family of Savage structures ( %) where  ranges over an arbitrary

set of ‘contexts’. To be able to relate the subjective outcomes/states of each

context to objective ones, I take each to partition (coarsen) some underlying set

of ‘objective’ outcomes, and each  to partition (coarsen) some underlying set of

‘objective’ states.6 This captures the ‘objective world’ and the agent’s (changing)

awareness of it. Formally:

Definition 2 A variable Savage structure is a family of Savage structures

( %)∈ indexed by some non-empty set  (of contexts), such that

• each  is a partition of some set (of objective outcomes encompassed

in context ),

• each  is a partition of some set (of objective states encompassed in

context ).

5Savage in fact did not impose finiteness. I add finiteness for simplicity.
6A partition of a set is a set of non-empty, pairwise exclusive and exhaustive subsets.
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An objective outcome/state simpliciter is an objective outcome/state encom-

passed in at least one context.

From now on, let ( %)∈ be a given variable Savage structure. Let:

 := 
 (acts conceived in context )

X := set partitioned by  (objective outcomes encompassed in context )

S := set partitioned by  (objective states encompassed in context )

X := ∪∈X (objective outcomes)

S := ∪∈S (objective states)

F := XS (objective acts).

The spaces  and  could reflect the framing at work in context . This framing

renders certain outcome/state concepts salient, e.g., through a mode of presenta-

tion or a level of descriptive detail.7 The framing-based interpretation follows Ahn

and Ergin (2010), extending their idea to outcome framing as well as state fram-

ing. Framing is only one of many possible sources/interpretations of the agent’s

concepts and hence of the spaces  and ; see Section 2.3.

Here is a two-context example corresponding exactly to Figure 1:  = { 0},
 = {{ } {}},  = {{ } {}},0 = {{ } {}}, and 0 = {{ } { }};
so X = {  }, S = {  }, X = X0 = {   }, and S = S0 = {   }.
The agent’s outcome/state spaces are non-fine in both contexts, and non-exhaustive

only in context . In general, the smaller the sets in  and  are, the finer the

agent’s outcome/state concepts are, up to the point of singleton sets (full refine-

ment); and the larger the sets X and S are, the more exhaustive these concepts
are, up to the entire sets X and S (full exhaustiveness).

When does the agent have full awareness of some type at some level?

Definition 3 The variable Savage structure ( %)∈ has

(a) exhaustive outcomes if in all contexts  we have X = X,
(b) exhaustive states if in all contexts  we have S = S,
(c) fine outcomes if in all contexts  each outcome  ∈  is singleton,

(d) fine states if in all contexts  each state  ∈  is singleton.

Our theorem will simplify under exhaustive states, and simplify differently

under fine states. Here are examples demonstrating the flexibility of our model:

• Savage:  contains a single context 0. Our variable structure reduces to a
classic Savage structure (%) := (0 0%0). Objective outcomes and

7If the agent is presented car insurance policies in terms of their net benefit as a function of the

number (up to 10) of accidents, then  contains the 11 events ‘ accidents’ for  = 0 1  10, and

 contains the 11 net-benefit outcomes; another context 
0 with a different mode of presentation

will induce different spaces 0 and 0 .
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states are not needed: w.l.o.g. we can, like Savage, let  and  be primitive

sets rather than any partitions.

• Stable outcome awareness: All contexts  lead to the same outcome space
 = , which we may take as a primitive set rather than any partition.

One might then identify contexts with state spaces (state awareness levels);

so  contains the ‘possible/feasible’ state spaces and  :=  for all  ∈  .

• Stable state awareness: All contexts  lead to the same state space  = ,

which we may take to be a primitive set rather than a partition. One might

then identify contexts with outcome spaces (outcome awareness levels), so

that  contains the ‘possible/feasible’ outcome spaces and  :=  for all

 ∈  .

• Fully variable awareness: All logically possible awareness states occur:
for all partitions  of X and  of S, where ||  ∞, there is a context
 ∈  in which  =  and  = . (To allow non-exhaustive awareness,

one should extend the quantification to partitions of any non-empty subset

of X or S, respectively.) This permits arbitrary ways to conceive the world.
If one identifies contexts with awareness levels,  becomes the set of all pairs

 = () of a finite partition of X and a partition of S, where  :=  and

 = .

• Finite awareness: All spaces  and  (and so all act sets ) are finite.

The agent can only conceive finitely many things at a time.

2.2 Excursion: preferences over subjective or objective

acts?

Some might prefer working with preferences over objective rather than subjective

acts (I do not, because the objects of preferences should be things the agent can

conceive, in line with my mentalistic rather than behaviouristic position on eco-

nomic modelling; see Dietrich and List 2016a, 2016b). One can indeed recast each

preference relation % in our variable Savage structure as one over objective acts,

more precisely over objective acts that are representable (measurable) in context

: just identify a preference between two subjective acts in  with a preference

between any two objective acts represented by them in context , respectively. If

wished, one could thus replace the relations % on  ( ∈  ) by corresponding

relations on { ∈ F :  is representable in } ( ∈  ), or at least interpret the

former relations as shorthands for the latter relations. But what exactly is the

subjective representation of an objective act?

Definition 4 Given a context  ∈  ,

• the subjectivization of an objective outcome  ∈ X, denoted , is the

subjective outcome in  containing  (the assignment  7→  maps X onto
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),

• the subjectivization of an objective state  ∈ S, denoted , is the subjective
state in  containing  (the assignment  7→  maps S onto ),

Definition 5 The (subjective) representation of an objective act  ∈ F in a
context  ∈  is the unique act  ∈  (if existent) which matches  modulo sub-

jectivization, in that whenever 0 ∈  subjectivizes  ∈ S (i.e.,  ∈ 0), then (0)
subjectivizes () (i.e., () ∈ (

0)). An  ∈ F is (subjectively) representable
in context  if its representation  exists.

Remark 1 (representability as measurability) Given a context  ∈  ,

• under exhaustive states and outcomes, an objective act is representable if and
only if it is ( )-measurable,

• in general, an objective act is representable if and only if its restriction to S
maps into X and is ( )-measurable.

8

state subjectivization

outcome subjectivization

f

Figure 2: An objective act  : S → X and its representation  :  →  (note

that  indeed maps S into X by Remark 2)

Remark 2 For any objective act  ∈ F representable in given a context , the
diagram in Figure 2 is

(i) well-defined, i.e., (S) ⊆ X (a trivial condition under exhaustive outcomes),

(ii) commutative, i.e., [()] = () for all  ∈ S.
As an illustration, consider an objective act  that makes the agent rich if

a coin lands heads (and poor otherwise), and that might also do many other

things, such as making him sick in the event of cold weather. In context  the

agent conceives only ‘wealth outcomes’ and ‘coin states’:  = { } and
 = { }, where  and  are the outcomes (sets of objective

outcomes) in which he is rich or poor respectively, and  and  are the

states (sets of objective states) in which the coin lands heads or tails respectively.

Then  is represented by the subjective act  that maps  to  and 

to . But if instead  = { } and  = {S}, the state concept no
longer captures the coin toss, and  is no longer representable.

8()-measurability means that members of the same  ∈  are mapped into the same

 ∈ , or equivalently, that the inverse image of any  ∈  is a union of zero or more  ∈ .
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2.3 Three clarifying interpretive remarks

1. One can take the spaces and  ( ∈  ) to represent the awareness/concepts/ontology

ascribed to the agent by the observer : they reflect how we take him to perceive the

world, and hence they embody our hypothesis (or theory, stipulation, conjecture

etc.) about the agent’s perception. This ascription or hypothesis could be guided

by: (i) the framing of outcomes and states; or (ii) the awareness/concepts as re-

ported by the agent when asked by the analyst about his current outcome/state

concepts; or (iii) the modeller’s own common sense or intuition; or (iv) neuro-

physiological evidence about how the context affects the cognitive system; or (v)

the sort of options that are feasible in context  (here  and  are constructed

such that all feasible options become representable as subjective acts, in a sense

made precise in Section 2.7); or (vi) observed choices (among objective acts) which

reveals the agent’s awareness, in a sense that can be made precise (here  and 

are constructed so as to be fine enough to distinguish between those objective acts

between which observed choices distinguish). There is also a completely different

interpretation: the spaces  and  could represent the agent’s real rather than

ascribed concepts in context , adopting a first-person rather than third-person

perspective. The literature routinely uses (and switches between) both types of

interpretation of Savage’s outcomes and states — i.e., interpretations in terms of

the agent’s ascribed or real ontology, i.e., of either our assumption about his con-

cepts or his real concepts possibly unknown to us. Savage himself had the second

interpretation in mind; he focused on rationality from a first-person perspective.

By contrast, mainstream behaviourist economics favours the first interpretation,

to ensure observability of all primitives.

2. By modelling subjective outcomes/states as sets of objective ones, I by no

means suggest that the agent conceives outcomes/states in terms of (complex)

sets. He may conceive them as indecomposable primitives. He may for instance

conceive the outcome ‘having close friends’ in complete unawareness of a huge

(infinite) set of underlying objective outcomes. Only our third-person perspective

identifies subjective outcomes/states with sets of objective ones.

3. One can think of a context  ∈  in broadly two ways. Either  represents

the environment (or frame, time point, decision node in a decision/game tree,

...) which triggers or causes the agent’s awareness state ( ) and preference

relation %. Or  is ‘only’ an index;  can then be identified with the agent’s

awareness state itself (under a minor loss of generality9), so that  is a space pair

(), where  :=  and  := . In the first case ( %)∈ captures
how awareness and preferences react causally to the environment. In the second

9The loss of generality is that preference must then be determined (fully) by awareness:

( ) = (0  0)⇒ %= %0 . This restriction is minor, since even without making it, it later

follows from Axiom 2 (see Proposition 1).
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case ( %)∈ is simply a summary of all ‘possible’ or ‘feasible’ awareness-
preference states (%) of the agent; the structure ( %)∈ could then
be abbreviated as (%)∈ , as each context  = () already encodes the spaces

 :=  and  := .

2.4 The objective/subjective terminology and notation

We must carefully distinguish between objective and subjective descriptions. By

default descriptions are subjective; so I often drop ‘subjective’. Formally:

• An objective outcome/state/act/event is a member of X / S / F = XS
/ 2S.

• A (subjective) outcome/state/act/event conceived in context  (∈
 ) is a member of  /  /  = 

 / 2.

• A (subjective) outcome/state/act/event simpliciter (without reference
to a context) is a member of some  /  /  / 2

 ( ∈  ).

• The (subjective) outcome/state space in context  is  / .

• A (subjective) outcome/state space simpliciter is some  /  ( ∈  ).

• The objectivization of an event ⊆  ( ∈  ), denoted∗, is the objective
event partitioned by ;  and ∗ are said to correspond to each other.

• Events  and  from possibly different contexts are (objectively) equi-

valent if ∗ = ∗.
• Any act  ∈  ( ∈  ) induces a function on S rather than , denoted

∗ and given by ∗() := () (where  is ’s subjectivization, given by

 ∈  ∈ );  and ∗ are said to correspond to each other.

2.5 Expected-utility rationalizations and revision rules

We can apply the classical expected-utility paradigm within each context.

Definition 6 An expected-utility (‘EU’) rationalization/representation of

the variable Savage structure ( %)∈ is a system ( )∈ of non-constant
‘utility’ functions  :  → R and probability measures10  : 2

 → [0 1] such

that

 %  ⇔ E() ≥ E() for all contexts  ∈  and acts   ∈ 

Our axioms will imply existence of an (essentially unique) EU rationalization

( )∈ whose utilities and probabilities obey three revision rules. The first two
of them are easily stated:

10The term ‘probability measure’ is used throughout in its finitely additive sense.
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R1: Any  is an increasing affine transformation of any 0 on the domain over-

lap  ∩0.

R2: Any  is proportional to any 0 on the domain overlap 2
∩0 .

Under R1 and R2, utilities are affinely rescaled and probabilities are proportionally

rescaled where concepts are stable. So if the agent, say, splits an outcome  ∈ 

into  and , resulting in a context 0 with 0 = (\{}) ∪ { } and 0 = ,

then 0 =  by R2, and utilities are essentially unchanged on \{} by R1.
R1 and R2 are in contrast with two stronger conditions that forbid revisions:

R1+: Any  equals any 0 on the domain overlap  ∩0 (‘stable utilities’).

R2+: Any  equals any 0 on the domain overlap 2
∩0 (‘stable probabilities’).

Neither R2 nor even R2+ prevents the agent from attaching a different prob-

ability to an event  ⊆  conceived in a context  and an objectively equival-

ent event 0 ⊆ 0 conceived in another context 
0. This happens if beliefs are

description-sensitive, i.e., dependent on how objective events are perceived sub-

jectively. Imagine that in context  the agent conceives the fine states {} and {}
and hence the event  = {{} {}}, while in context 0 he conceives the coarser
state { } and hence the event 0 = {{ }}. Although  and 0 represent the
same objective event { }, the agent might in context  find  unlikely on the

grounds that {} and {} each appear implausible, while in context 0 finding 0
likely because he fails to analyse this event in terms of its implausible subcases.11

The following revision rule — a significant strengthening of R2 and R2+ — excludes

such description-sensitivity:

R2++: If events  ⊆  and 0 ⊆ 0 (  
0 ∈  ) are objectively equivalent, then

they get the same probability, i.e., ∗ = 0∗ ⇒ () = 0(
0) (‘objectively

stable probabilities’).

I now give three examples. All of them assume an EU rationalization ( )∈ .
The first two concern utilities, and the last one concerns probabilities.

Example 1: stable utilities. Objective outcomes are numbers between 0 and

100: X = [0 100). The agent has a coarse conception of numbers, i.e., conceives
‘vague numbers’ in the form of intervals. So each outcome space  consists of

pairwise disjoint intervals. If for instance  = {[ +1) :  = 0  99}, then the
agent effectively ignores decimals, i.e., identifies any numbers having the same non-

decimal digits. How might he assign utilities? Suppose all utilities are reducible

11Concretely,  could stand for country 1 attacking country 2, and  for 2 attacking 1. In

context  the agent finds event  = {{} {}} unlikely: he reasons that {} and {} are each
implausible as each country is unlikely to attack. In context 0, he finds event 0 = {{ }} likely
on unsophisticated grounds: he treats 0 as a primitive scenario of ‘war’, which seems likely to
him, as he fails to realise that a war requires an (unlikely) attack by either country.
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to a fixed utility function of objective states  : X → R, in one of the following
ways. For any context  and any outcome  ∈  (an interval),

• () = () where is a ‘representative’ or ‘rounded’ number defined, e.g.,

as ’s lower boundary inf  or upper boundary sup  or midpoint inf +sup 
2

;

• () =  where  is a ‘representative’ or ‘rounded’ utility level defined, e.g.,

as inf∈ () or sup∈ () or
inf∈ ()+sup∈ ()

2
.

In all these cases utility revision satisfies not just R1, but even R1+ (stable util-

ities), since () depends only on , not on the context .12

Example 2: changing utilities. As in the previous example, let X = [0 100),
and let each  consist of pairwise disjoint intervals. But utilities are no longer

reducible to a fixed utility function on X. Instead they are formed as follows.
In any context , the outcomes (intervals) in  are put into a linear order

1 2   such that 1’s members are smaller than 2’s, which are smaller than

3’s, etc., where  = ||. Let (1) = 1, (2) = 2, ..., () = . This

leads to utility revisions: for instance, the same outcome [50 100) gets utility

([50 100)) = 2 when  = {[0 50) [50 100)}, but utility 0([50 100)) = 3

when 0 = {[0 10) [10 50) [50 100)}. Neither R1+ nor even R1 needs to hold:
two utility functions  and 0 need not be increasing affine transformations of

one another on  ∩0. However, R1 does hold if never more than 3 outcomes

are conceived (i.e., || ≤ 3 for all  ∈  ), or never more than 4 outcomes are

conceived and outcome awareness is exhaustive (i.e., each  partitions the full

interval X = [0 100)). The reason is that in these cases any two spaces 0

either share at most two elements (so that  is an increasing affine transformation

of 0 on  ∩0), or coincide (so that  = 0).

Example 3: objectively stable beliefs. Let the source of uncertainty be purely

objective. That is, let S contain the outcomes of some random experiment, e.g.,

coin tossing sequences or roulette outcomes. We capture the objective risk by

a probability measure  on some algebra R on S. In each context  the agent
conceives only finitely many states:  is a finite partition of S into members of
R. (If S contains coin tossing sequences and in context  only the first three tosses
are conceived, then states in  correspond to triples of outcomes of the first three

tosses.) Despite his limited state conception, let the agent give the true (objective)

probability to those states he conceives: () = () for all contexts  and states

 ∈  . Then clearly R2++ (and thus R2 and R2+) hold.

12Is it plausible to reduce all s to a fixed function  on X? One might object that agents
with limited awareness do not conceive the objects X and  , and so cannot consciously calculate
values like (inf ) or inf∈ (); the utility model would thus have an ‘as if’ status, hence
become questionable.
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2.6 Tighter EU rationalizations and their revision rules

I now sketch tighter kinds of EU rationalizations with fewer degrees of freedom:

‘stable’, ‘unified’, and ‘classical’ EU rationalizations. In each case some of the

revision rules R1, R1+, R2, R2+ and R2++ come for granted. The unified and

classical cases can be linked to Ahn-Ergin’s (2010) central rationalization con-

cepts.13

Stable and unified EU rationalizations. I begin with utilities, and then turn

to probabilities.

Definition 7 A family ()∈ of utility functions  on  is stable if it is given

by a single function  on ∪∈ in that each  matches  on , i.e.,  =  |
.

Remark 3 Stability of ()∈ is equivalent to R1+, so implies R1.

Definition 8 A family ()∈ of probability functions  on 2
 is

• stable if it is given by a single function  on ∪∈2 in that each  is equal

to  on 2, i.e.,  =  |2 ,
• unified if more generally it is given by a single function  on ∪∈2 in
that each  is proportional to  on 2, i.e.,  ∝  |2 .14

Remark 4 Stability of ()∈ is equivalent to R2+, which implies unification,
which in turn implies R2.

Definition 9 If an EU rationalization ( )∈ is stable in its utility functions
(given by ) and stable or more generally unified in its probability functions (given

by  ), then ( )∈ — or in short (  ) — is a stable EU rationalization or

more generally unified EU rationalization, respectivey.15

Remark 5 An EU rationalization ( )∈ is

• stable if and only if R1+ and R2+ hold,
• unified if R1+ and R2+ hold, and only if R1+ and R2 hold.

13If Ahn-Ergin’s framework is recast within ours, it corresponds to the special case of a fixed

outcome space  =  and exhaustive and finite state spaces . In this case, our unified and

classical EU rationalizations reduce essentially to their ‘partition-dependent’ resp. ‘partition-

independent’ EU representations (partly because the conditions which unification and classicality

impose on the functions  reduce to Ahn-Ergin’s assumption of a fixed utility function).
14Even if  is just proportional to  on 2 ,  fully determines , given that () = 1.
15One might also consider EU rationalizations which are stable only in utilities (short-hand:

( ()∈ )), or stable or more generally unified only in probabilities (short-hand: (()∈   )).
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Classical EU rationalizations. Stability of an EU rationalization is a big (and

questionable) step towards classical rationality. But it falls short of it, as the agent

can display major forms of dynamic inconsistency. For instance, as the context

changes from  to 0 and two old outcomes   ∈  get merged into a single one

 ∪  ∈ 0, the utility 0( ∪ ) could exceed the utilities () and () of

both suboutcomes — a ‘dynamic dominance violation’. Similarly, as two old states

  ∈  get merged into a single one ∪ ∈ 0, the probability 0(∪) can differ
from () + () — a ‘dynamic additivity violation’. The natural explanation of

such violations is, of course, that in context 0 the agent no longer conceives the
‘subcases’ of ∪ and ∪, as ∪ and ∪ appear as indecomposable primitives.
I now define ‘classical’ EU rationalizations. They exclude any such dynamic

inconsistency, and render the agent classical in all respects — except from awareness

changes (imposed exogenously via the variable Savage structure). Such an ‘almost

classical’ agent ranks subjective acts as if he conceived the underlying objective

outcomes and states: although he evaluates subjective entities (outcomes, states

and acts), he does so objectively, by taking into account the underlying objective

outcomes and states. One may legitimately question the plausibility of such a

hybrid agent: why should someone who can come up with objective evaluations fail

to come up with objective outcomes, states and acts in the first place? The point

of defining classical EU rationalizations is not to defend ‘objective evaluations of

subjective objects’ as genuinely realistic, but to spell out the classical benchmark

from which our less classical rationalizations depart.

Let us start with classical probabilities, before turning to classical utilities.

From an orthodox rationality perspective, it should not matter how objective

events are subjectively represented (described, framed), in the following sense:

Definition 10 A family ()∈ of probability functions  on 2
 is classical if

the probability of any event  depends only on its objectivization ∗, i.e., if ()∈
is given by a single function  on the set ∪∈{∗ :  ∈ 2} of objectivized events:

() = (∗) for all contexts  ∈  and events  ⊆ 

Remark 6 Classicality of ()∈ is equivalent to R2++ (objectively stable prob-
abilities), hence implies R2 and R2+.

In Example 3, ()∈ is classical, and generated precisely by the example’s
true probability measure  (restricted to ∪∈{∗ :  ∈ 2}).
Turning to classical utilities, imagine in a context  the agent conceives the

outcome { }, which has two underlying objective outcomes; { } might stand
for ‘rich’,  for ‘very rich’, and  for ‘moderately rich’. Under the classical expected-

utility paradigm, composite prospects are systematically evaluated in terms of the

14



expected/average utility of their subprospects. Accordingly, the prospect { } is
to be evaluated in terms of the expected/average utility of  and . This requires

assigning utilities and probabilities to objective outcomes. Invoking probabilities

at the outcome level is unconventional — but it is natural and necessary if coarse

outcomes should be evaluated classically by the expected utility of the objective

(sub)outcomes. This motivates the following definition:

Definition 11 A family ()∈ of utility functions  on  is classical if the

utility of any outcome is the expected utility (given that outcome) of the objective

outcome, i.e., if

() = E( |) for all contexts  ∈  and outcomes  ∈  (1)

relative to some fixed utility function of objective outcomes  : X → R and some
fixed probability measure  on (some algebra on) X.16

Remark 7 If ()∈ is classical, then it is stable (so obeys R1+), as it is given
by the single function  mapping  ∈ ∪∈ to E( |) (with  and  as in

Definition 11).

Classicality of utilities goes far beyond stability, so beyond the rule R1+. It

implies a notable property (of which R1+ is the special case in which  = 1):

Remark 8 Classicality of ()∈ implies that whenever the context changes from
 to 0 and a new outcome  ∈ 0 is partitionable into old (sub)outcomes 1   ∈
, then the new utility of  is a weighted average of the old utilities of 1  :

0() =
P

=1 (|)(), with  as in Definition 11.

Definition 12 If an EU rationalization ( )∈ is classical both in its util-
ity functions (given by  and ) and its probability functions (given by ), then

( )∈ — or in short (  ) — is a classical EU rationalization.17

Remark 9 Classical EU rationalizations ( )∈ are stable (hence unified), by
Remarks 5, 6 and 7.

Classical EU rationalizations perform a universal reduction to the objective

level. Yet, as mentioned, it is hard to imagine how an agent with limited aware-

ness could evaluate outcomes and states as if he were aware of underlying objective

16In particular, for each  ∈ ∪∈, E( |) is well-defined, meaning that (1) (·|) is well-
defined, i.e.,  is defined and non-zero at , and (2)  has a finite expectation w.r.t. (·|) (e.g.,
 is bounded on  and measurable w.r.t. the algebra on which  is defined).
17One might consider EU rationalizations ( )∈ which are classical only in utilities (short-

hand: (  ()∈ )) or only in probabilities (short-hand: (()∈  )).
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outcomes and states. In defence of classical EU rationalizations, one might try to

interpret them in a more literal and less as-if -like way. For that purpose ima-

gine all unawareness is non-radical: the agent has in principle mental access to

objective outcomes and states, but for some reason (such as simplicity) conceives

outcomes and states more coarsely than he could have. Yet when assigning utilit-

ies/probabilities to his coarse outcomes/events he suddenly becomes sophisticated

and goes down to objective outcomes/states. I leave it open whether this back-

and-forth between a coarse and a fine perspective is psychologically plausible —

and if not, whether an ‘as if’ interpretation is plausible. Figure 3 summarizes the

Figure 3: Revision policies for utilities/probabilities and corresponding represent-

ations of utilities/probabilities, from most general (left) to most specific (right)

various revision policies with their corresponding representations, in the order of

increasing specificity. I insert ‘...’ where a revision policy has no corresponding

representation or where a representation has no corresponding revision policy.

2.7 Excursion: unawareness, choice behaviour, and non-

representable options

Our model is easily connected to choice behaviour. Assume the agent finds himself

in a context  ∈  and faces a choice between some concrete (pre-theoretic) options,

such as meals or holiday destinations. The modeller faces two possibilities: he

could model options either as subjective acts in  or as objective acts in F. Neither
possibility is generally superior: all depends on the intended level of description.

In the first case, the feasible set is a subset of , and the prediction is simply that

a most %-preferred member is chosen.

For the rest of this subsection, I assume the second case: let options be ob-

jective acts. So the feasible set is a subset of F, not . Which choice does %

predict? It predicts that the agent chooses a feasible objective act whose subjective

representation in  (see Definition 4) is most %-preferred. More precisely, our
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variable Savage structure ( %)∈ predicts that whenever in a context  ∈ 

the agent has to choose from a set F ⊆ F of representable objective acts, then
he chooses an  ∈ F such that  %  for all  ∈ F . (This may lead to choice
reversals as the context changes; see Section 4.)

No prediction is made about choice from non-representable objective acts: the

model is silent on such choices. Does the model thereby miss out on many choice

situations? Perhaps not, because the mental process of forming outcome/state

concepts might (consciously or automatically) adapt these concepts to the feasible

options, to ensure representability. I call the agent — or more exactly his awareness

states ( )∈ — adaptive (to feasible options) if for each context  all

objective acts that can be feasible in  are representable in .18 The idea is that

the agent forms awareness of a coin toss when and because some feasible objective

acts depend on it. Forming awareness is a costly mental activity, which is likely

to be guided by the needs of real choice situations, including the need to represent

feasible options. Adaptiveness can thus be viewed as a rationality requirement on

the agent’s concepts/awareness states.19

Is there any way to predict choices even when some feasible options are non-

representable, i.e., even without adaptiveness? There is indeed, if one is ready to

make one of two auxiliary assumptions: one could take non-representable options

to be ignored (‘not perceived ’), or rather to be misrepresented (‘misperceived ’).20

3 Six Savage-inspired axioms

Sections 3—5 temporarily assume exhaustive states (see Definition 3). In fact, each

‘axiom’, ‘theorem’ or ‘proposition’, and most ‘definitions’ and ‘remarks’, also apply

18A full-fledged definition could state as follows. Let choice situations be pairs (F  ) of a
non-empty menu F ⊆ F of (feasible) objective acts and a context or ‘frame’  ∈  (in which

the choice from F is made). Some choice situations occur, others do not. Let CS be the set of
occurring (or feasible) choice situations. Adaptiveness (to feasible options) means that for all

(F  ) ∈ CS each  ∈ F is representable in context .
19The agent’s awareness state ( ) can be ‘irrational’ in two distinct ways, the second way

being non-adaptiveness. (1) Outcomes may be too coarse to incorporate all relevant features of

objective outcomes that the agent would care about had he considered them (in the example at

the end of Section 2.2, health features are absent from  = { }, though presumably
relevant). (2) States may be too coarse (given the outcome space ) for all feasible objective

acts to be representable (in the mentioned example,  is not representable if  = {S}, given
that  = { }). In (1) and (2) I assumed exhaustive states and outcomes, but the idea
can be generalized.
20Under the first hypothesis, the agent considers not the full feasible set, but only the subset

of representable feasible options (among which he picks an option whose representation is most

%-preferred). Under the second hypothesis, a non-representable feasible option  in F is not
ignored, but (mis)perceived as some subjective act in  which fails to properly represent  .

Which is this subjective act? Here one would need to develop a theory of misrepresentation.
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to non-exhaustive states. The three exceptions — two definitions and one remark

— will be marked by ‘exh’. So ‘Definition 20exh’ applies only under exhaustive

states, but ‘Definition 13’ applies generally. For each exception (marked by ‘exh’),

a general re-statement is given in Section 6.

I now state six axioms which reduce to Savage’s axioms in the one-context case.

Standard notation: Let  be the restriction of function  to subdomain .

For any object  and set , let  be the function on  with constant value .

For functions  and  on disjoint domains,  is the function on the union of

domains matching  on  ’s domain and  on ’s domain. Examples are ‘mixed’

acts \ ∈ , where   ∈  and  ⊆  ( ∈  ).

A background assumption: Henceforth let the structure ( %)∈ satisfy
independence between outcome and state awareness, so that the agent’s outcome

awareness and state awareness do not constrain one another. Formally: any occur-

ring outcome and state spaces  and 0 ( 
0 ∈  ) can occur jointly, i.e., some

context 00 ∈  has 00 =  and 00 = 0.
21

I begin with the analogue of Savage’s first axiom:

Axiom 1 (weak order): For all contexts  ∈  , % is a transitive and complete

relation (on ).

Savage’s sure-thing principle requires that the preference between two acts only

depends on the acts’ outcomes at those states where they differ. This famous pos-

tulate can be rendered in two ways in our setting, by applying sure-thing reasoning

either only within each context, or even across contexts:

Axiom 2* (sure-thing principle, local version): For all contexts  ∈  , acts

   0 0 ∈ , and events  ⊆ , if  =  0,  = 0, \ = \ and
 0\ = 0\, then  %  ⇔  0 % 

0.

Axiom 2 (sure-thing principle, global version): For all contexts  0 ∈  ,

acts   ∈  and  0 0 ∈ 0, and events conceived in both contexts  ⊆  ∩ 0,
if  =  0,  = 0, \ = \ and  00\ = 00\, then  %  ⇔  0 %0 

0.

Remark 10 Axiom 2* is the restriction of Axiom 2 to the case  = 0.

How does Axiom 2 go beyond Axiom 2*? The preference between the two

acts is insensitive not just to the outcomes outside , but also to the concep-

tion/awareness of states outside , since \ can differ from 0\. If two acts
agree when it doesn’t rain, then it does not matter whether the agent conceives

21This excludes agents who conceive the outcome ‘I am popular’ only jointly with the state ‘I

win in the lottery’, or who conceive fine states only jointly with coarse outcomes.
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just one coarse ‘non-rainy state’ or 17 fine ‘non-rainy states’. Axiom 2 thus applies

sure-thing reasoning all the way through, regardless of barriers of context, i.e., of

the concept/awareness of irrelevant states.22

Axiom 2 is decomposable into two axioms, namely Axiom 2* and a new axiom

which requires the preference between acts  and  to be unchanged whenever the

agent reconceives (e.g., refines or coarsens) states at which  and  coincide. The

reconception of states of course leads  and  to be recast as acts  0 and 0 defined
on the new state space. Formally:23

Axiom 2**: For all contexts  0 ∈  with set of common states  :=  ∩ 0,

if two acts   ∈  coincide on \ where they yield a constant outcome  ∈
 ∩ 0, then  %  ⇔  0 %0 

0, where  0 and 0 denote the acts in 0 which

respectively match  and  on  and both yield  on 0\.

To paraphrase Axiom 2**, the preference between  and  does not change as

the states on which  and  coincide are reconceived, so that  and  become  0

and 0. While in Axiom 2**  0 and 0 are the direct counterparts of  and  in

context 0, in the sure-thing principle (Axiom 2 or 2*)  0 and 0 are by no means
equivalent to  and : their outcomes may have changed outside .

Remark 11 Axiom 2** is the special case of Axiom 2 in which  =  ∩ 0 and
in which \ and 

0
0\ (and thus \ and 

0
0\

) all generate a same constant

outcome.

Compare the reasoning underlying Axiom 2** with the classical sure-thing

reasoning underlying Axiom 2*. In both cases, states on which  and  coincide

are deemed irrelevant to the preference between  and , yet in two different senses:

either the outcomes at these states do not matter (Axiom 2*) or the awareness

of these states does not matter (Axiom 2**). The two modes of reasoning are

complementary. Together they yield Axiom 2:

Remark 12 Axioms 2* and 2** are jointly equivalent to Axiom 2.24

It is debatable whether Axiom 2 or 2* is the ‘right’ or ‘natural’ rendition of

Savage’s sure-thing principle in our framework of changing awareness. Axiom 2

builds in additional ‘rationality’ in the form of evaluative consistency across con-

texts; if such consistency is not viewed as an integral part of sure-thing reasoning,

22Replacing sure-thing reasoning by ambiguity aversion in our setting is an interesting avenue.
23Axiom 2** is comparable to Karni-Viero’s (2013) awareness consistency axiom.
24Why do Axioms 2* and 2** jointly imply Axiom 2? Let  0    0 0 obey Axiom 2’s

premises. To show that  %  ⇔  0 %0 
0, fix an  ∈  ∩0 . Applying Axiom 2* on each

side, the claimed equivalence reduces to \ % \ ⇔  00\ %0 
0
0\, which

holds by Axiom 2**. (Here  is a subset of  ∩ 0 , the set denoted ‘’ in Axiom 2**.)
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Axiom 2* is presumably the right rendition of sure-thing reasoning. By contrast,

Axiom 2 is the right rendition if one construes sure-thing reasoning as reasoning

which compares acts systematically and solely based on their outcomes where they

differ, so that the preference between any acts  and  is determined by (or, as

philosophers say, supervenes on) their restrictions  and  to the ‘disagreement

domain’  := { ∈  : () 6= ()}.25
I now extend four familiar Savagean notions to our setting:

Definition 13 (preferences over outcomes) In a context  ∈  , an outcome

 ∈  is weakly preferred to another  ∈  — written  %  — if  % 
(recall that  and  are constant acts defined on the state space ).

Definition 14 (conditional preferences) In a context  ∈  , an act  ∈  is

weakly preferred to another  ∈  given an event  ⊆  — written  % 

— if  0 % 
0 for some (hence under Axiom 2 any) acts  0 0 ∈  which agree

respectively with  and  on  and agree with each other on \.

Definition 15 (conditional preferences over outcomes) In a context  ∈  ,

an outcome  ∈  is weakly preferred to another  ∈  given an event  ⊆
 — written  %  — if  % .

Definition 16 (null events) In a context  ∈  , an event  ⊆  is null if it

does not affect preferences, i.e.,  ∼  whenever acts   ∈  agree outside .

I am ready to state the analogue of Savage’s third axiom:

Axiom 3 (state independence): For all contexts  ∈  , outcomes   ∈ ,

and non-null events  ⊆ ,  %  ⇔  % .

A bet on an event is an act that yields a ‘good’ outcome  if this event occurs

and a ‘bad’ outcome  otherwise. Savage’s fourth axiom requires preferences over

bets to be independent of the choice of  and ; the rationale is that such prefer-

ences are driven exclusively by the agent’s assessment of the relative likelihood of

the events on which bets are taken. Savage’s axiom can again be rendered as an

intra- or inter-context condition:

Axiom 4* (comparative probability, local version): For all contexts  ∈  ,

events  ⊆ , and outcomes  Â  and 0 Â 
0 in , \ % \ ⇔

0
0
\ % 

0


0
\.

25Such supervenience amounts to the existence of a fixed binary relation over ‘subacts’ D
(⊆ ∪∈∪⊆ (

 ×
 )) such that, for all contexts  ∈  and acts   ∈ ,  %  ⇔  D ,

where  := { ∈  : () 6= ()}. This is in turn equivalent to Axiom 2.
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Axiom 4 (comparative probability, global version): For all contexts  0 ∈ 

with same state space  :=  = 0, events  ⊆ , and outcomes  Â  in 

and 0 Â0 
0 in 0, \ % \ ⇔ 0

0
\ %0 

0


0
\.

Remark 13 Axiom 4* is the restriction of Axiom 4 to the case that  = 0.

I shall use Axiom 4 rather than 4*. Axiom 4 applies the reasoning underlying

Savage’s fourth axiom across barriers of context. Yet Axiom 4 is only a ‘mildly

global’ axiom, since its contexts  and 0 share the same state concept; only the
outcome concept may change. Under an interesting condition, Axioms 4 and 4*

are actually equivalent (given other axioms of our key theorem); so we could work

simply with Axiom 4* if we sacrifice some generality. The condition in question

is, informally, that the variable Savage structure offers sufficient flexibility for

conceiving/inventing new outcomes.26

Like for the sure-thing principle, so for Savage’s comparative-probability pos-

tulate it is debatable whether Axiom 4 or 4* is the more faithful translation into

our framework of changing awareness. Axiom 4* seems more faithful to Savage if

any demand of cross-context consistency is viewed as ‘orthogonal’ to the principle

underlying Savage’s postulate. By contrast Axiom 4 seems more faithful if one

interprets Savage’s principle as requiring that the preference between two bets is

fully determined by (‘supervenes on’) the pair of underlying events.27

Another familiar notion can now be imported into our setting:

Definition 17 (comparative beliefs) In a context  ∈  , an event  ⊆  is at

least as probable as another  ⊆  — written  %  — if \ % \
for some (hence under Axiom 4 any) outcomes  Â  in .

Savage’s fifth and sixth axioms have the following counterparts:

Axiom 5 (non-triviality): For all context  ∈  , there are acts  Â  in .

Axiom 6* (Archimedean, local version): For all contexts  ∈  , acts  Â 

in , and outcomes  ∈ , one can partition  into events 1   such that

\
Â  and  Â \

for all 

26Formally, the condition is this: for any two contexts  0 ∈  there are contexts ̂ ̂0 ∈ 

such that (i)  ⊆ ̂, (ii) 0 ⊆ ̂0 , and (iii) ̂ ∩̂0 contains at least two outcomes (which

are non-indifferent in context ̂ and/or ̂0). Think of ̂ and ̂0 as contexts in which additional
outcomes have been invented/conceived compared to  resp. 0, such that ̂ and ̂0 share at least
two (non-indifferent) outcomes. In Appendix B I show that under this condition Axioms 4 and

4* are equivalent given Axioms 1, 2 and 6.
27Such supervenience amounts to the existence of a binary relation over subjective events D

(⊆ ∪∈ (2 × 2)), interpretable as an ‘at least as likely’ relation, such that, for all contexts
, events  ⊆  and reference outcomes  Â  in , betting on  is weakly preferred to

betting on  (i.e., \ % \) if and only if  D . This is equivalent to Axiom 4.
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Just as Savage’s 6th postulate, Axiom 6* is very demanding. It forces the

agent to conceive plenty of small events, ultimately forcing all state spaces  to

be infinite (assuming Axiom 5 for non-triviality). I shall thus use a cognitively less

demanding Archimedean axiom, which permits all state spaces  to be finite. To

avoid ‘state-space explosion’, it allows the events 1   to be not yet conceived

in context : they are conceived in some possibly different context 0. So the
agent can presently have limited state awareness, as long as states are refinable by

moving to a new context/awareness. The slogan is: ‘refinable rather than (already)

refined states’. To refine states, it suffices to incorporate new contingencies into

states until a sufficiently fine partition exists; one might incorporate the results of

three independent tosses of a fair dice.28 The next axiom formalises the idea of

refinable states.29

Definition 18 Acts  ∈  and  ∈ 0 ( 
0 ∈  ) are (objectively) equivalent

if they induce the same function of objective states, i.e., ∗ = ∗.

Definition 19 A partition  refines or is at least as fine as a partition 0 if,
for some equivalence relation on , 0 = {∪∈ :  is an equivalence class}.30

Axiom 6** (Archimedean, first global version): For all contexts  ∈  , acts

 Â  in , and outcomes  ∈ , there is a context 
0 ∈  with a state space 0

at least as fine as  and an outcome space 0 ⊇  (ensuring that 0 contains

acts  0 equivalent to  and 0 equivalent to ) such that one can partition 0 into

events 1   for which

 00\
 Â0 

0 and  0 Â0 
0
0\

for all 

Remark 14 Axiom 6* is the restriction of Axiom 6** to the case that  = 0.

Axiom 6** is not yet satisfactory. It fails to ensure any connection between

%0 and %, allowing even that  Â0  although  Â . I thus use a variant

28Here each refined state describes an ‘old’ state and a triple of dicing results. The refined

state space can thus be partitioned into the 63 = 216 small-probability events of the sort ‘the

triple of dicing results is (  )’, where    ∈ {1 2  6}.
29 ‘Refinability’ of states in a context  is for us an existential notion: the occurrence of suitably

refined states in some context 0 ∈  . Under a stronger reading, states are ‘refinable’ if the agent

can refine them, i.e., bring about the finer state concept — an ability of which he makes no use

in context , but makes use in a context 0 with finer states. Is the idea of unrefined yet refinable
states coherent even if we read into ‘refinability’ an ability of the agent to refine? We seem to

get dangerously close to ‘unawareness but awareness’. Recall however Section 1’s distinction

between radical and non-radical unawareness. The idea that in a context  the agent ‘can’ (is

‘able’ to) refine his state space , say into 0 , is meaningful provided his initial unawareness of

whatever he will bring to his awareness is of the non-radical kind: he ‘can’ bring a coin toss to

his awareness only if initially he is not radically unaware it, but merely does not consider it.
30In other words, 0 coarsens or is at least as coarse as .
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of Axiom 6**, which indirectly guarantees a connection. It requires the objective

events represented by 1   to be of a certain innocuous kind. Informally, they

must belong to an algebra R of risky objective events, e.g., roulette events or coin

flipping events. Before turning to formal details, I give an example of the risky

algebra R, preceded by a natural definition.

Definition 20exh In a context  ∈  , an objective event  ⊆ S is (subjectively)
representable if it corresponds to some subjective event, which is then called its

(subjective) representation and denoted  (= { ∈  :  ⊆ }).

The objective event {  } ⊆ S might be represented by {{ } {}} ⊆  in

a context , and by {{  }} ⊆ 0 in a context 
0, while being non-representable

in a context 00 in which the agent lacks appropriate state awareness.

Example of risky algebra R. Let the objective state space be a Cartesian
product S = S1 × S2 of a set S1 of ‘risky objective states’ (e.g., coin-tossing se-
quences) and a set S2 of ‘non-risky objective states’ (e.g., weather states). Let R
be an algebra on S consisting of objective events about the risky objective state
(e.g., about coin tosses). That is, R = { × S2 :  ⊆ S1} (or more generally
R = {×S2 :  ∈ R0} for some algebra R0 on S1). In each context  let the agent
have a certain awareness of risky states given by a partition 1 of S1 and a certain
awareness of non-risky states given by a partition 2 of S2.31 The overall state
space is  = {×  :  ∈ 1  ∈ 2}. So states ×  in  have a risky part 

and a non-risky part .32 Let there be a ‘true’ objective probability measure  on

2S1 (or more generally on the above-mentioned algebra R0 on S1). I also regard 

as a function on the ‘risky’ algebra R, via (× S2) := () for all × S2 ∈ R.
Let the agent admit an EU rationalization ( )∈ . Let his beliefs about risky
events always be correct: if an  =  × S2 ∈ R is representable in a context ,

the representation  ⊆  gets the ‘true’ probability () = () (note that

 = { ×  ∈  :  ⊆ }). Under this picture, the agent may have limited and
changing awareness of risky objective events in R, but whenever such an event is
representable the agent assigns the true and stable probability. For instance, the

agent needs not conceive the risky contingency that a fair coin lands heads in the

first 10 tosses, but whenever he does, he assigns the true probability of (1
2
)10.

Instead of exogenously fixing a ‘risky’ algebra R, I use two criteria for when
an algebra R on S can count as ‘risky’: R is robust and consists of incorporable

objective events. Before defining ‘robust’ and ‘incorporable’, I should anticipate

the definitive statement of the sixth axiom:

31One might define contexts as being (not just inducing) pairs of finite partitions of S1 resp.
S2. Then  is some set of such partition pairs  = (1 2), where 1 := 1 and 2 := 2.
32If one wished to allow for non-exhaustive state awareness (a case currently set aside), then

one should let the 2s be partitions of arbitrary non-empty subsets of S2.
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Axiom 6 (Archimedean, second global version): There is a robust algebra

R of incorporable objective events (a ‘risky’ algebra) such that, for all contexts

 ∈  , acts  Â  in , and outcomes  ∈ , there is a partition of S into
some 1   ∈ R and a context 0 ∈  with state space 0 =  ∨ {1  }
(ensuring that each  is representable by an  ⊆ 0) and an outcome space

0 ⊇  (ensuring that 0 contains acts 
0 equivalent to  and 0 equivalent to

), such that

 00\
 Â0 

0 and  0 Â0 
0
0\

for all 

Axiom 6 allows that  = 0; then 1   are already representable in context

. I now gradually build up the axiom’s terminology. I start with a familiar notion:

Definition 21 If  and 0 are partitions (in the generalized sense of possibly
containing ∅), their join is  ∨ 0 := { ∩ 0 :  ∈  0 ∈ 0}\{∅}.33

An algebra34 R on S is robust if the ranking of R-determined acts is stable:

Definition 22 For an algebra R on S, an act  is R-determined if the inverse
image −1() of any of its outcomes  represents an objective event in R.

Remark 15exh An act  is R-determined (given an algebra R on S) if and only
if ∗ is R-measurable.35

Definition 23exh An algebra R on S is robust if, for all contexts  0 ∈  , we

have  %  ⇔  0 %0 
0 whenever  ∈  and 

0 ∈ 0 are equivalent R-determined
acts and  ∈  and 

0 ∈ 0 are also equivalent R-determined acts.

Robustness is natural ifR contains risky objective events, so thatR-determined
acts are risky acts, because the agent plausibly has fixed ‘preferences under risk’.

The idea is that a risky objective event gets the same subjective probability re-

gardless of the state space  in which it is represented, namely it gets the objective

probability. That a fair coin lands heads always has 1/2 probability — objectively,

and thus (where conceived) subjectively. This translates into a stable evaluation

of risky acts, hence into robustness of R.36
33For now we only need joins of two partitions of S. But in principle  and 0 could partition

different sets — a case needed later when allowing non-exhaustive states.
34R is an algebra on S if (a) S ∈ R, (b)  ∈ R⇒  ∈ R, and (c)  ∈ R⇒  ∪ ∈ R.
35R-measurability of ∗ means that (∗)−1() ∈ R for all outcomes  of ∗, i.e., of  .
36The idea of stable preferences over risky acts parallels Karni-Viero’s (2013) invariant risk

preferences axiom. The main difference is that our Savagean approach has no exogenous notion

of risky acts. For us invariance of preferences is not an axiomatic requirement on risky acts,

but a criterion for interpreting certain objective events (and the acts that depend on them) as

‘risky’.
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Example of risky algebra R — continued. As noted, members of thisR indeed
get the same (true) probability whenever representable. This makes R robust,

assuming from now on that the utility functions  ( ∈  ) obey revision rule R1

(or even R1+) to guarantee cross-context consistency in outcome evaluations. To

show robustness, consider contexts  0. By R1 we may assume w.l.o.g. that  and

0 coincide on their domain overlap  ∩ 0 (otherwise rescale 0). It suffices

to consider equivalent R-determined acts  ∈  and  0 ∈ 0 and show that

E() = E00(
0). The claimed equality reduces to E(

∗) = E0(
0∗),

where both expectations can refer to the measure  on R as  and  0 are R-
determined. This holds as ∗ =  0∗ and as  and 0 coincide on  ∩0.

Definition 24 A preference relation %0 is faithful to another % ( 
0 ∈  )

if it preserves all comparisons made by %: given any acts   ∈ , we have

 %  ⇔  0 %0 
0 for some (unique) acts  0 ∈ 0 equivalent to  and 0 ∈ 0

equivalent to .

If %0 is faithful to %, any act in  is equivalent to one in 0. So in context

0 the agent must conceive all previous outcomes and at least as fine states:

Remark 16 If %0 is faithful to %, then (a) 0 is at least as fine as  (assuming

||  1), and (b) 0 ⊇  (hence 0 =  under exhaustive outcomes).

An objective event is incorporable if, whenever it is not representable, the agent

can refine states to make it representable, without ‘preference perturbation’.

Definition 25 An objective event  ⊆ S is incorporable if it is always repres-
entable after (if needed) a preference-neutral state refinement: for every context

 ∈  there is a context 0 ∈  (possibly equal to ) such that 0 refines  to make

 representable, i.e., 0 =  ∨ {}, and %0 is faithful to %.

The paradigmatic example of incorporability is, once again, risky objective

events, as these are trivial in many respects. Refining states such that a coin toss

becomes representable is an easy mechanical task (at least in principle), and the

new preferences should be faithful to the old ones since the ranking of previously

conceived (hence, coin-toss-independent) acts will hardly change.

Example of risky algebra R — continued. Here R indeed consists of incor-

porable objective events in two stylised cases:

1. Stable and full risk awareness: the agent always has full awareness of the

risky state, i.e., each risky space 1 ( ∈  ) is the finest partition {{} :
 ∈ S1}. Then all ×S2 ∈ R are automatically representable in all contexts

— a special case of incorporability.
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2. Instable and finite risk awareness: the agent can have any finite risk aware-

ness, i.e., the risky spaces 1 ( ∈  ) are all the finite partitions of S1.37 I
add four auxiliary assumptions (which could be weakened). First, all non-

risky spaces 2 are also finite. Second, risky and non-risky states are prob-

abilistically independent: for all ×  ∈  ( ∈  ), (× ) = ()(),

where () and () denote ’s and ’s marginal probabilities, i.e., () =P
0∈2 ( × 0) and () =

P
0∈1 (

0 × ). The motivation is that

risky contingencies like tossing outcomes are unrelated with non-risky ones

like the weather. Third, I assume independence between risky and non-risky

state awareness: any risky space 1 and non-risky space 02 ( 
0 ∈  )

can occur jointly, i.e., some context 00 has 001 = 1 and 002 = 02.

Fourth, probabilities of non-risky states depend only on awareness of non-

risky states: whenever 2 = 02 then () = 0() for all  ∈ 2 = 02.

Then each risky objective event  =  × S2 ∈ R, whilst not always rep-
resentable, is incorporable. Why? Consider a context . By assumption we

may pick a context 0 such that 01 = 1∨{} and 02 = 2. Clearly,

0 =  ∨ {}, so that  is representable in context 0. We may assume
that  = 0 by independence between outcome and state awareness, and

that  = 0 =:  by R1 (otherwise rescale 0). To show that %0 is faithful

to %, take any act  ∈ . Clearly, there is an equivalent act 
0 ∈ 0 . It

suffices to show that E() = E0(
0). This claim holds because, when

moving from  to 0, (i) each state  ×  in  splits into ‘substates’ in 0

which partition × , namely into all 0 ×  ∈ 0 such that 
0 ⊆  (at most

two substates exist as 0 must be  ∩ or  ∩ and cannot be empty), (ii)
 0 ‘essentially extends’  , i.e.,  ’s value at a state  ×  ∈  matches 

0’s
value at each substate 0 ×  ∈ 0, and (iii) 0 ‘essentially extends’ , i.e.,

 assigns to each state ×  ∈  the same probability as 0 does to the set

of substates of × , namely the probability ()() = ()0().

Our axioms generalize Savage’s well-known axioms (stated in Appendix C.2):

Remark 17 In the single-context case  = {0}, the variable Savage structure
( %)∈ is equivalent to an ordinary Savage structure (%) = (0 0%0

), and our axioms reduce to Savage’s axioms, i.e.,

(a) Axiom 1 is equivalent to Savage’s Axiom P1,

(b) Axioms 2 and 2* are each equivalent to Savage’s Axiom P2,

(c) Axiom 3 is equivalent to Savage’s Axiom P3,

(d) Axioms 4 and 4* are each equivalent to Savage’s Axiom P4,

(e) Axiom 5 is equivalent to Savage’s Axiom P5,

37If R takes the general form {× S2 :  ∈ R0} for an algebra R0 on S1, not the simple form
{× S2 :  ⊆ S1}, then the 1s are the finite partitions of S1 into members of R0.
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(f) Axioms 6, 6* and 6** are each equivalent to Savage’s Axiom P6.38

4 Objective instability, subjective stability

Interestingly, whether an agent who obeys our axioms is stable or context-dependent

in his preferences and beliefs depends on the chosen level of description.

4.1 Instability at the objective level

When modelling options as objective acts, choice reversals happen easily, due to

framing effects and other empirically studied reasons. Just imagine that in two

contexts  0 ∈  the agent chooses between the same objective acts   ∈ F,
which he subjectively represents as   ∈  in context , and as 0  0 ∈ 0 in

context 0 (see Definition 5). Then he will choose  in context  if  Â , but  in

context 0 if 0 Â0 0. Such reversals are driven by changes in representation, i.e.,

description. All this is consistent with Axioms 1—6. One may view such reversals

as preference reversals, by ‘lifting’ preferences to the objective level. I shall talk

then of ‘effective’ preferences:

Definition 26 (effective preference over objective acts) In a context  ∈  ,

an objective act  ∈ F is (effectively) weakly preferred to  ∈ F — written
 %  — if  and  are representable and the representations satisfy  % .

The effective preference between   ∈ F is reversible, as possibly  % 

but  Â0  . Similar reversals can happen for beliefs. The agent may attach

high probability to the event {{} {}} (when conceived), but low probability to
the objectively equivalent event {{ }} (when conceived); both events represent
the same objective event { }. In the experimental literature this sort of phe-
nomenon is known under names such as ‘packing/unpacking events’ (e.g., Tversky

and Koehler 1994). Formally, we may lift the agent’s comparative beliefs to the

objective level, talking then of ‘effective’ beliefs:

Definition 27 (effective comparative belief about objective events) In a

context  ∈  , an objective event  ⊆ S is (effectively) at least as probable
as another one  ⊆ S — written  %  — if  and  are representable and the

representations satisfy  % .

Nothing in Axioms 1—6 prevents an effective belief  %  from reversing into

 Â0 .

38Axioms 6* and 6** imply Axioms 6 by letting R contain all representable objective events.

27



4.2 Stability at the subjective level

Despite ‘objective instability’, our axioms imply stable preferences over subjective

acts (and outcomes) and stable comparative beliefs about subjective events.

Proposition 1 (preference stability) Under Axiom 2, acts are ranked the same

way wherever conceived:  %  ⇔  %0  for all contexts  
0 ∈  and acts

conceived in both contexts   ∈  ∩ 0.

So, under Axiom 2 the context affects only which acts are conceived, not how

acts are ranked when conceived. Saying ‘only’ is perhaps an understatement, as

Proposition 1 has a bite only for those pairs of contexts  0 ∈  for which ∩0 6=
∅, i.e., for which  = 0 and ∩0 6= ∅. If awareness varies so drastically that
no distinct contexts share any acts, then Proposition 1 is vacuous.

Proposition 2 (outcome-preference stability) Under Axiom 6, outcomes are

ranked the same way wherever conceived:  %  ⇔  %0  for all contexts  
0 ∈ 

and outcomes conceived in both contexts   ∈  ∩0.

One might at first take stability over outcomes to be a special case of stability

over acts, by identifying outcomes with constant acts. In fact, both stability

properties are independent, as the same outcome  ∈  ∩0 is identified with

distinct constant acts  ∈  and 0 ∈ 0 if  6= 0.

Proposition 3 (comparative-belief stability) Under Axioms 2, 4, 5 and 6,

events are ranked the same way wherever conceived:  %  ⇔  %0  for all

contexts  0 ∈  and events conceived in both contexts  ⊆  ∩ 0.

By contrast, our axioms permit changes in quantitative rather than comparative

beliefs: the same event can get different probability in different contexts in which

it is conceived. This is clear from Theorem 1 below, in which probabilities must

obey the revision rule R2, but not the rule R2+ of stable probabilities. An extreme

type of probability — zero probability — is however stable, for the following reason:

Proposition 4 (stability of nullness) Under Axiom 2, any event  is null in

all or none of the contexts  where it is conceived, i.e., where  ⊆ .

Finally, the comparative-belief stability extends even to certain objective events,

namely those taken from a robust algebra:

Proposition 5 (stability of comparative belief on robust algebras) Under

Axioms 2, 4 and 5, objective events from a robust algebra R on S are ranked the
same way wherever representable:  %  ⇔  %0  for all contexts  0 ∈  and

objective events  ∈ R representable in both contexts.
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5 The characterization theorem

After introducing the third revision rule (Section 5.1), I state and discuss the main

theorem (Section 5.2), and give examples of belief revision (Section 5.3)

5.1 The theorem’s third revision rule: enough objectively

stable probabilities

While the revision rules R1 and R2 concern utilities/probabilities of subjective out-

comes/events, the third rule concerns (induced) probabilities of objective events.

Informally, the third rule requires that enough objective events have stable, i.e.,

representation-invariant, probabilities; interpretatively, there must be enough (re-

vealed) objective risk. Before defining relevant terms, I anticipate this rule’s state-

ment, which refers to the agent’s family of probability measures  on 2
 ( ∈  ):

R3: The objective agreement of the functions  (  ∈  ) is fine.

I now define ‘objective agreement’ and ‘fine’. The s ‘agree’ on a probability 

of an objective event  if, roughly speaking, each  assigns probability  to ’s

representation. The precise definition is more general: it allows  to be not (yet)

representable in a context , in which case the probability  is derived not from 

itself, but from a version of  defined on a refined state space in which  becomes

representable. Formally:

Definition 28 Given a context  ∈  , any function  on 2 induces a function,

denoted  ∗, on the set of representable objective events, via  ∗() :=  ().

Definition 29 Functions  on 2
 ( ∈  ) agree on value  at objective event

 (⊆ S) — or simply agree at  — if each  induces the value  at  ‘modulo

extension’, i.e., if each induced function  ∗ has an extension  ∗0 (
0 ∈  ) such that

0 =  ∨ {} (so that  ∗0() is defined) and  ∗0() = . (So  ∗ () =  for

those contexts  where  is already representable, i.e., for which 0 could equal .)

Definition 30 The objective agreement of functions  on 2
 ( ∈  ) is the

function  on the objective agreement domain A = { ⊆ S : the s agree at

} assigning to each  ∈ A the agreed value at .

In both cases 1 and 2 of Section 3’s continued ‘Example of risky algebraR’, the
functions  agree on value () at each  ∈ R, and so their objective agreement
domain is (or includes) R and their objective agreement is (or extends) .

In general, the objective agreement domain A of subjective probability func-

tions  can be as small as {∅S} or as large as 2S. The larger this domain is, the
more objective events are assessed context-invariantly.
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Remark 18 The objective agreement  of probability measures  on 2
 ( ∈  )

is a probability measure in the wide sense that its domain A need not be an algebra
(in fact it need not be closed under union, but must be closed under complement

and contain S). That is, (S) = 1 and  is additive, i.e., (∪) = ()+()

if  ∪ ∈ A and  ∩ = ∅.

Definition 31 A probability measure on an algebra A on S is fine if for all   0
one can partition S into some 1   ∈ A of probabilities at most . More

generally, a probability measure in the wide sense of an arbitrary domain A ⊆ 2S
is fine if on some algebra B ⊆ A the induced ordinary probability measure is fine.39

5.2 The theorem

The following theorem states the implications of our axioms (see Appendix A for

results on tighter rationalizations and revision rules):

Theorem 1 The variable Savage structure ( %)∈ satisfies Axioms 1—6
if and only if it has an EU rationalization ( )∈ satisfying the revision rules
R1, R2 and R3. Each  is unique and each  is unique up to increasing affine

transformation.40

Remark 19 In the single-context case  = {0}, Theorem 1 reduces to Savage’s

Theorem for the ordinary Savage structure (0  0 %0), as Axioms 1—6 reduce

to Savage’s Axioms P1—P6 (by Remark 17), rules R1 and R2 hold trivially, and

R3 reduces to Savage’s requirement that 0 be atomless.
41

Remark 20 Unlike in Savage’s Theorem, Theorem 1’s representation allows that

all state spaces  are finite; but it forces the objective state space S to be infinite
(as by R3 the objective agreement domain is infinite). X can be finite or infinite.42

Remark 21 In Theorem 1’s representation, probabilities depend only on state

awareness, and utilities only on outcome awareness: if  = 0 then  = 0, and

if  = 0 then  = 0 up to normalisation. In particular:

• if all state spaces coincide, then all  coincide,

39Fineness implies Savage’s atomlessness if A is an algebra, and is equivalent to atomlessness

if A is even a -algebra.
40Formally, if ( )∈ is an EU rationalization satisfying R1—R3, then ( 0  

0
)∈ is also

one if and only if, for all  ∈  ,  0 =  and  0 =  +  for some   0 and  ∈ R.
41Indeed, R3 reduces to fineness of 0 , and so to atomlessness of 0 by footnote 39.
42As the objective agreement domain is infinite, infinitely many objective events are incor-

porable. So, although states can be unrefined in a given context, they must be ‘indefinitely

refinable’.
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• if all outcome spaces coincide, then all  coincide up to normalisation.

Revealed objective probabilities. I propose to interpret the objective agree-

ment of the s as capturing (revealed) objective probabilities, i.e., risk. Accord-

ingly, the objective agreement domain A ⊆ 2S contains (revealed) risky objective
events. Seen this way, R3 requires a sufficient amount of objective rather than

subjective uncertainty. Interpreting members of the objective agreement domain

A as ‘risky’ is in line with our earlier move to interpret members of the algebra R
in Axiom 6 as ‘risky’, because R ⊆ A, as the proof will reveal.

The need to revise both probabilities and utilities. Under our framework

and axioms, revision both of probabilities and utilities is an unavoidable con-

sequence of changing awareness. The rules R1—R3 ‘discipline’ the revision. By

R2, probability ratios are stable, an interesting analogy to Ahn-Ergin’s (2010)

‘partition-dependent probabilities’ and Karni-Viero’s (2013) ‘reverse Bayesianism’.

But nothing so far guarantees existence of Section 2.6’s tighter rationalizations

with less or no revision. For one, the s need not be of unified (‘Ahn-Ergin’)

type43 — let alone stable (rule R2+) or even classical, i.e., objectively stable (rule

R2++). Secondly, the functions  might have to be non-stable, i.e., violate R1+,

regardless of how one scales them via increasing affine transformations. To see

why, consider contexts  0 00. After scaling 0 to match  on  ∩0, and then

scaling 00 to match 0 on 0 ∩00, 00 might fail to match  on ∩00. This

shows the genuine need for utility revision over and above probability revision.

However, under certain conditions tighter rationalizations do exist, as shown in

Appendix A.2.

How do the revision rules follow from the axioms? Let me give an early

hunch for interested readers; details appear in the Appendix. I here take for

granted that Axioms 1—6 jointly guarantee an EU rationalization ( )∈ .

• How does R1 follow? As in R1, consider contexts  and 0, for simplicity with
same state space  = 0. By preference stability (Proposition 1), % and%0

coincide on ∩0, the set of functions from  = 0 into∩0. Meanwhile

the (common) restriction of % and%0 to ∩0 admits two expected-utility

rationalizations, i.e., (|∩0  ) and (0|∩0  0), obtained from the

initial rationalizations ( ) of % and (0  0) of %0 by restricting the

utility functions. Since (|∩0  ) and (0|∩0  0) represent the same

relation, a uniqueness result — shown in the appendix — implies that |∩0

must be an increasing affine transformation of 0|∩0 , as in R1.

43Indeed, there may exist contexts  0 00 ∈  and states  ∈ ∩0   ∈ 0 ∩00   ∈ 00 ∩
such that () = () 0() = 0() 00() 6= 00(); a unifying function  would then have

to satisfy  () =  ()  () =  ()  () 6=  () a contradiction.
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• Axiom 2 (or just 2**) is crucial for R2. Let us see why. As in R2 consider

contexts  and 0, for simplicity with the same outcome space  = 0.

Ordinal probability comparisons between events conceived in both states are

stable: for all  ∈ 2∩0 ,  %  ⇔  %0 . This is because bets

on  and  (of type \ \ for ‘win’ and ‘lose’ outcomes  Â 

in ) yield the same ‘lose’ outcome outside  ∩ 0, so that by Axiom 2**

the preference between these bets does not change as we move to context 0

and accordingly recast both bets as functions on 0. Thus the probability

measures  and 0 are ordinally equivalent on 2
∩0 : for all  ∈ 2∩0 ,

() ≥ () ⇔ 0() ≥ 0(). Getting from ordinal equivalence to

proportionality uses further arguments and axioms.

• Axiom 6 is crucial for R3. Just as in Savage’s Theorem the 6th axiom is

the main key to the richness in small-probability events, i.e., to an atomless

probability measure, so in our theorem Axiom 6 is the main key to the

richness in small-probability objective events, i.e., to R3.

5.3 Examples of belief revision

Complementing Examples 1—3 about utility and probability revision, I now work

out two concrete examples of probability revision.

Example: objectively correct probabilities. Consider again Example 3, in

which all uncertainty is objective and each probability measure  assigns the ob-

jectively right probabilities to all currently conceived events; as noted, this implies

R2++ (objectively stable beliefs), and so R2 and R2+. How about R3? For con-

creteness, let the uncertainty come from an infinite sequence of tosses of a fair

coin. So S = {0 1}N, where the th entry of an objective state ()∈N ∈ S is 1/0 if
the th toss results in heads/tails. An objective event  ⊆ S is finitely complex if
it concerns only a finite subsequence of tosses, i.e.,  = {()∈N ∈ S : ()∈ ∈ }
for some finite  ⊆ N and some set of -subsequences  ⊆ {0 1} ; so  says that
the -subsequence lies in  ( might say that the 1st and 4th toss coincide, so that

 = {1 4} and  contains the 1-1 and 0-0 subsequences). Let R be the algebra of

finitely complex objective events, and  the true probability measure onR. So, for
all  = {()∈N ∈ S : ()∈ ∈ } in R, () := ||

2|| =
number of -subsequences in 

total number of -subsequences
,

since all subsequences in {0 1} are equally likely.44 Let the agent only ever con-
ceive finitely many states, each of which is finitely complex. Formally, the set of

state spaces { :  ∈ } consists of all finite partitions of S into members ofR. An
example is  = {‘1st toss heads’, ‘1st toss tails & 2nd toss heads’, ‘1st toss tails &
2nd toss tails’}. As subjective probabilities match objective ones, () = () for

44The value
||
2|| does not depend on the pair () chosen to represent  (the canonical choice

has minimal ).
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all contexts  and states  ∈ . Then R3 holds, because the objective agreement

of the s is the true probability measure , which is indeed fine. The objective

agreement domain is thus the algebra R of finitely complex objective events.45

Example: both objective and subjective uncertainty. I now take up Section

3’s ‘Example’, with its objective state space S = S1×S2 built from a risky space S1
and a non-risky space S2. S1 might be the coin-tossing space {0 1}N of the previous
example. Recall that in each context  the agent has some risk awareness given

by a partition 1 of S1 and some awareness of non-risky contingencies given by a
partition 2 of S2; this results in the state space  = {×  :  ∈ 1  ∈ 2}.
Recall also that probabilities of risky events follow a ‘true’ measure  defined on

some algebra R0 on S1, possibly the maximal one 2S1 . So whenever an objective
event of risky type  =  × S2 is representable in a context , its representation
 (= {×  ∈  :  ⊆ }) gets the true probability: () = (). If S1 is the
coin-tossing space {0 1}N of the previous example, then  could be that example’s
true probability measure on the algebra of finitely complex subsets of {0 1}N, or
an extension of it to 2S1 = 2{01}



.46 To obtain the belief revision rules R2 and

R3, I assume that probabilities of non-risky states are of the following unified

(Ahn-Ergin-inspired) type. For any context  I denote the marginal probability

of a non-risky state  ∈ 2 by 2() (= ({ ×  :  ∈ 1})). Let any ever
conceived non-risky state  ∈ ∪∈2 have a ‘plausibility’ ()  0, and let each
2 ( ∈  ) be ’s restriction 2, rescaled proportionally such that the values sum

to one. I also make three auxiliary assumptions familiar from Section 3: finiteness

of all non-risky spaces 2, probabilistic independence between risky and non-risky

states, and independence between risky and non-risky state awareness.47

To show R2, consider contexts  0. For simplicity the proof takes the overlap
 ∩ 0 to be finite, so that it suffices to show that  and 0 are proportional as

functions of states in  ∩ 0 rather than events in 2∩0 . This holds because, as
functions of states ×  ∈  ∩ 0, both  and 0 are proportional to ()().

As for R3, I restrict attention to two cases invoked already in Section 3:

1. Stable and full risk awareness: each 1 is the finest partition {{} :  ∈ S1}.
Here, the s agree at each objective event of the risky type × S2, namely
on the value (). This is obvious, partly because such objective events are

45 is in fact the restriction to R of the infinite independent product of the uniform Bernoulli

measure. This product measure, sometimes denoted
∞N
=1

(1
2
), is defined on a -algebra,

which is obtainable as the -algebra generated by R, i.e., the closure of R under countable union

and complement. This closure contains ‘infinitely complex’ objective events.
46Such an extension exists (via the Hahn-Banach theorem), but is only finitely additive.
47The general statement of the probabilistic independence assumption, valid even when  is

infinite (because 1 is infinite), is this: for all contexts  and sets  ⊆ 1 and  ⊆ 2,

({×  ∈  :  ∈   ∈ }) = ({×  ∈  :  ∈ })({×  ∈  :  ∈ }).
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representable in all contexts.

2. Instable and finite risk awareness: the agent can have any finite risk aware-

ness, i.e., the risky spaces 1 are all finite partitions of S1 (into members
of R0). Then the s agree at each objective event of the risky type × S2
( ∈ R0), namely on the value (). The proof is easy; the additional twist
compared to stable and full risk awareness is that such objective events are

not always representable, but merely incorporable.

So in both cases R3 holds as long as  is fine, as is for instance the case if S1 is the
coin-tossing space {0 1}N and  reflects true tossing probabilities. The objective

agreement domain is or includes the algebra { × S2 :  ∈ R0}, i.e., the ‘risky’
algebra R of Section 3’s ‘Example’.

6 The general case

I now lift the temporary restriction to exhaustive states. Recall that each above

‘axiom’, ‘theorem’ or ‘proposition’, and most ‘definitions’ and ‘remarks’ continue

to apply as stated. The three exceptions, namely Definitions 20exh and 23exh and

Remark 15exh, will now be re-stated in their general form, using the same number-

ing but without index ‘exh’. The general statements are equivalent to their earlier

counterparts in case of exhaustive states. In light of the generalized statements,

readers can afterwards reconsider Sections 3—5 without restriction to exhaustive

states. This will pose no problems, but two details should be kept in mind. First,

if one partition refines another, it follows that both are partitions of the same set

by Definition 19 (so if  refines 0, then S = S0). Second, the (unchanged)
Definitions 25 and 29 and Axiom 6, when applied with non-exhaustive states, re-

quire forming the join of partitions of possibly distinct sets (i.e., S and S). This
join then partitions the intersection of the two sets (i.e., S), by Definition 21. I
now state the three generalizations.

First, I generalize the definition of representations of objective events:

Definition 20 In a context  ∈  , an objective event  ⊆ S is (subjectively)
representable if its encompassed part  ∩ S corresponds to a subjective event,
called then ’s (subjective) representation, denoted  (= { ∈  :  ⊆ }).

Second, the notion of an act  being determined by an algebra R on S, while
defined as before, has a generalized ‘measurability characterization’:

Remark 15 A subjective act  ∈  (  ∈  ) is R-determined (given an algebra
R on S) if and only if ∗ is R0-measurable where R0 = { ∩ S :  ∈ R} is the
trace of R in S.
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Third, I generalize the definition of robustness of an algebra R, through repla-
cing ‘equivalent R-determined acts’ by ‘corresponding R-determined acts’:

Definition 32 Two acts  ∈  and 
0 ∈ 0 (where  

0 ∈  ) are corresponding

R-determined acts (for an algebra R on S) if both are given by an identical R-
measurable function, i.e., there is an R-measurable function  on S such that
() = (̃) whenever  ∈ ̃ ∈  and () =  0(̃) whenever  ∈ ̃ ∈ 0 (i.e.,

such that, S = ∗ and S0 =  0∗).

Definition 23 An algebra R on S is robust if, for all contexts  0 ∈  , we have

 %  ⇔  0 %0 
0 whenever  ∈  and  0 ∈ 0 are corresponding R-determined

acts, and  ∈  and 0 ∈ 0 are also corresponding R-determined acts.

Definition 23 indeed generalizes Definition 23exh, for the following reason:

Remark 22 Under exhaustive states, two acts  ∈  and 
0 ∈ 0 ( 

0 ∈  ) are

corresponding R-determined acts if and only if they are equivalent (i.e., ∗ =  0∗)
and R-determined.

The label ‘corresponding R-determined acts’ is explained by a simple fact:

Remark 23 Each of two corresponding R-determined acts is R-determined.

7 The special case of fine states

I now apply our theorem to the case of fine states. Here all  ∈  are singleton.

So just one kind of state awareness can vary: the level of state exhaustiveness.

Remark 24 Under fine states, all objective events are representable in each con-

text (hence, are trivially incorporable).

As a result, the fine-state case allows us to work with a simpler sixth axiom:

Axiom 6̃ (Archimedean, fine-state version): There is a robust algebra R on

S such that, for all contexts  ∈  , acts  Â  in , and outcomes  ∈ , one

can partition  into events 1   ⊆  representing objective events from R
such that \


Â  and  Â \

for all .

We can also work with a more basic notion than ‘objective agreement’:

Definition 33 The objective overlap of functions  on 2
 ( ∈  ) is the meet

(greatest common subfunction) of the functions of objective events  ∗ ( ∈  ).
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Remark 25 The objective overlap of functions  on 2
 ( ∈  ) is a subfunction

(restriction) of their objective agreement, and coincides with it under fine states.

Remark 26 The objective overlap of probability measures  on 2
 ( ∈  ) is

itself a probability measure, namely the restriction of each  ∗ to the algebra { ⊆
S :  ∗ () (:= ()) is defined

48 and identical for all  ∈ }.

Theorem 1’s fine-state corollary follows via Remark 25 and a trivial lemma:

Lemma 1 Under fine states, Axioms 6 and 6̃ are equivalent given Axiom 2.

Corollary 1 Under fine states, Axioms 1—5 and 6̃ hold if and only if there is an

EU rationalization ( )∈ satisfying R1, R2, and a third revision rule: the
objective overlap of the functions  is fine.

49

8 Exogenizing risk

I now restate Theorem 1 using an exogenous notion of risky objective events (but

leaving the objective probabilities of these events endogenous). To achieve this, I

introduce an exogenous algebra R (on S) of ‘risky’ objective events, and replace
Axiom 6 by three R-specific axioms:

Axiom 6R (Archimedean, global version 3): This axiom states like Axiom 6,
but without the initial quantification ‘There is a robust algebra R of incorporable

objective events such that’.

Axiom 7R (robust risk preference): The algebra R is robust.

Axiom 8R (risk incorporability): All objective events in R are incorporable.

Theorem 2 Given an exogenous (risky) algebra R on S, the variable Savage
structure ( %)∈ satisfies Axioms 1—5 and 6R—8R if and only if it has an
EU rationalization ( )∈ satisfying R1, R2, and a third revision rule: the
objective agreement of the functions  includes

50 a fine (‘objective’) probability

measure on R. Each  is unique and each  is unique up to increasing affine

transformation.

48Definedness is equivalent to representability of  and comes for free under fine states.
49Fine states are essentially objective states. So, had this paper focused exclusively on fine

states, we could have introduced each  as a primitive set (not a partition), redefined the

‘objective state space’ as ∪∈, and redefined accordingly all concepts that refer to objective
states (such as ‘robust algebras’ and ‘objective agreement/overlap’).
50A function includes another if it is an extension of the other.
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Remarks 20 and 21 apply analogously to Theorem 2. To obtain Theorem 2’s

fine-state corollary, I drop Axiom 8R (which comes for free), simplify the third
revision rule (using Remark 25’s reduction of ‘objective agreement’ to ‘objective

overlap’), and simplify Axiom 6R (using a lemma)

Axiom 6̃R: This axiom states like Axiom 6̃, but without the initial quantification
‘There is a robust algebra R such that’.

Lemma 2 Under fine states and an exogenous (risky) algebra R on S, Axioms
6R and 6̃R are equivalent given Axiom 2.

Corollary 2 Under fine states and an exogenous (risky) algebra R on S, Axioms
1—5, 6̃R and 7R hold if and only if there is an EU rationalization ( )∈ sat-
isfying R1, R2, and a third revision rule: the objective overlap of the functions 

includes a fine (‘objective’) probability measure on R.

9 Concluding remarks

I have presented a unified framework and theorem for preferences under uncertainty

and changing awareness. Preferences are governed by expected utility with three

rules for revising utilities and probabilities as awareness changes. The theorem

has many special cases, including (i) fixed awareness, where we recover Savage’s

Theorem, (ii) fixed outcome awareness, where utilities are stable, (iii) fixed state

awareness, where probabilities are stable, (iv) exhaustive state awareness, where

some key definitions simplify, and (v) fine state awareness, where Axiom 6 and

the third revision rule simplify. Just as Savage’s axioms have been weakened over

time, giving rise to ‘non-EU’ theories, it would be interesting to relax the current

axioms and explore ‘less rational’ representations and revision rules.

In our analysis, the agent appears as either stable or unstable in his preferences

and beliefs, depending on whether a subjective or objective level of description is

chosen. Our analysis suggests that the instability and context-dependence which

agents display from an objective perspective are driven by a changing subjective

perception of the objective world.

A When do tighter EU rationalizations exist?

I give partial answers to when unified or even classical EU rationalizations exist.
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A.1 When do unified EU rationalizations exist?

Call an EU rationalization ( )∈ (or just a family ()∈ of utility functions)
equivalent to another if the latter arises from the former via increasing affine trans-

formations of all . Equivalent rationalizations are interchangeable in that they

imply the same preferences. Two conditions on stability in concepts/awareness

will do the intended job:

PSO (Partially Stable Outcome Concept): The contexts share at least two

outcomes, i.e., |∩∈| ≥ 2; or more generally, one may partition  such

that the contexts of any partition cell share at least two outcomes and no

two contexts from distinct partition cells share any outcomes.

PSS (Partially Stable State Concept): The contexts share a non-null event,

i.e., ∩∈ is a non-null event in each context in  ; or more generally, one

may partition  such that the contexts of any partition cell share a non-null

event and no two contexts from distinct partition cells share a non-null event.

Proposition 6 Given any EU rationalization ( )∈ ,

(i) under PSO, ()∈ obeys R1 if and only if some equivalent family is stable,
(ii) under PSS, ()∈ obeys R2 if and only if it is unified,
(iii) so, under PSO and PSS, ( )∈ obeys R1 and R2 if and only if some

equivalent EU rationalization is unified.

So Theorem 1 implies axiomatizations of some tighter rationalizations:

Corollary 3 Under PSO, the variable Savage structure obeys Axioms 1—6 if and only if

it has an EU rationalization which obeys R2 and R3 and is stable in utilities (i.e.,

obeys R1+).

Corollary 4 Under PSS, the variable Savage structure obeys Axioms 1—6 if and only if

it has an EU rationalization which obeys R1 and R3 and is unified in probabilities

(so obeys R2).

Corollary 5 Under PSO and PSS, the variable Savage structure obeys Axioms 1—

6 if and only if it has a unified EU rationalization obeying R3 (and by unification

R1+ and R2).

Proof of Proposition 6. (i): Assume PSO. and let ()∈ obey R1. I define
a function  on ∪∈ of which each  is an increasing affine transformation

on . It suffices to define  on ∪∈ 0 for any fixed cell 
0 of the partition

in PSO. For scaling purposes, fix a ∗ ∈  0. For each  ∈  0 let  0
 be the (by

R1 existing) increasing affine transformation of  which coincides with ∗ on
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 ∩∗ . Any two functions 
0
1
  0

2
(1 2 ∈  0) coincide on their domain overlap

1 ∩2, because they are increasing affine transformations of one another and

coincide at two or more points (as |1 ∩2| ≥ |∩∈ 0| ≥ 2). So we may define
 on ∪∈ 0 so as to match each  0

 ( ∈  0) on .

(ii): Assume PSS. Let ()∈ obey R2. I define a unifying function  on

∪∈2. It suffices to define  on ∪∈ 02 for any fixed cell  0 of the partition
in PSS.51 Consider the non-null overlap  := ∩∈ 0. For scaling purposes fix
∗ ∈  0. For all  ∈  0, let  0

 be the (by R2 existing) multiple of  which matches

∗ on the domain overlap 2
∩∗ , hence on  ( 0 is not a probability measure as

 0
() 6= 1, unless  0

 = ). Any two of the 
0
s ( ∈  0) coincide on their domain

overlap, since on the overlap they are multiples of each other and agree at . So

we may define  on ∪∈ 02 as matching all  0
 ( ∈  0) on 2. ¥

A.2 When do classical EU rationalizations exist?

Classical probabilities. Recall that the agent’s system probability measures

()∈ is ‘classical’ just in case it obeys the condition R2++ of objective stability:
any objective event receives the same probability whenever it is representable. In

Theorem 1 we can strengthen R2 to R2++ if we add a very strong axiom and

meanwhile restrict attention to exhaustive states:

Axiom DIP (description-invariant preferences): For all contexts  0 ∈  ,

we have  %  ⇔  0 %0 
0 whenever acts   ∈  are objectively equivalent to

acts  0 0 ∈ 0, respectively.

Under this axiom, the preference between getting $50 for sure and getting $100

only in the objective event  = {  } does not depend on whether  is subject-
ively represented as {{} {} {}}, {{ } {}}, {{} { }}, or {{  }}.

Corollary 6 Under exhaustive states, the variable Savage structure satisfies Ax-

ioms 1—6 and DIP if and only if it has an EU rationalization satisfying R1, R2++

and R3.52

Proof. Assume exhaustive states. First, assume the stated representation. Ax.

1—6 hold by Theorem 1. Regarding Ax. DIP, consider  0 ∈  ; w.l.o.g. let

 and 0 coincide on  ∩ 0. It suffices to consider  ∈  and  0 ∈ 0

with ∗ =  0∗ and show that E( ◦ ) = E0 (0 ◦  0), or equivalently, that
E∗ ( ◦∗) = E∗

0
(0 ◦ 0∗). This holds because (i)  ◦∗ = 0 ◦ 0∗, (ii) ∗ =  0∗

51Conflicts across partition cells cannot arise since events shared by contexts from different

partition cells will always be assigned the same value of zero
52Theorem 2 has an analogous corollary.
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is measurable w.r.t. the algebra of objective events representable in both contexts,

and (iii)  ∗ and  ∗0 agree on that algebra.

Conversely, assume Ax. 1—6 and DIP. By Theorem 1, there is a rationalization

( )∈ obeying R1, R2 and R3. Let  : A → [0 1] be the (fine) objective

agreement of the s. To show R2++, let  ⊆ S be representable in contexts
 and . For a contradiction, let  ∗ () 6=  ∗ (), say  ∗ ()   ∗ (). As 
is fine, its range is dense in [0 1]. So we can pick a  ∈ A such that  ∗ () 
()   ∗ (). As  and  agree on value () at , 

∗
 extends to some

 ∗0 where 0 =  ∨ {} and  ∗0() = (); and  ∗ extends to some  ∗0
where 0 =  ∨ {} and  ∗0() = (). The inequalities  ∗ ()  ()

and ()   ∗ () now reduce to  ∗0()   ∗0() and  ∗0()   ∗0(). This
contradicts belief-stability on robust algebras (Prop. 5), since  and  belong to

2S, a robust algebra by Ax. DIP. ¥

If we take limited awareness seriously, Axiom DIP (with its implication R2++)

is questionable, as it operates as if the agent had awareness of objective states

and could thus recognize the objective equivalence between acts or events.

Classical utilities. It would go far beyond this paper to try to provide axiomatic

foundations for classicality in utilities. But here is a hunch of how one might

proceed. Assume an EU rationalization is already stable in utilities (Corollary 3

tells us how to get up to this point). Let  be the stable utility function on ∪∈.

Bolker’s (1966) powerful representation theorem tells us when a function  on a

system Σ of subsets of an underlying set Ω has an ‘expectational representation’,

so that any () is the expectation conditional on  of a some fixed function  on

Ω w.r.t. some fixed probability measure  on Σ. (Bolker did not have EU theory in

mind, but his result became the basis of Jeffrey’s 1983 far too unknown alternative

EU theory.) If we now think of Ω as X, of Σ as ∪∈, and of  as  , then Bolker’s

expectational representation of  renders  (= ) ‘classical’ in our sense. Of

course, Bolker’s expectational representation applies under conditions that do not

yet follow from our axioms; he for instance takes Σ to be an algebra. One might

thus try to strengthen our axioms such that they imply (an EU rationalization

with) a stable utility function  which obeys Bolker-type conditions that guarantee

an expectational (hence, ‘classical’) representation.

B Proof of the stability propositions and the claim

in footnote 26

This and the following appendices contain proofs, starting with the stability pro-

positions (App. B), followed by Thm. 1 under exhaustive states (App. C), Thm.
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1 in general (App. D), Thm. 2 (App. E), and finally Lem. 1 and some technical

lemmas which will be stated in due course and proved en bloc at the very end to

avoid distraction (App. F). Proofs use the following notation:

• Recall the notation ‘’ and ‘’ (Def. 4), ‘∗’ and ‘∗’ (Sect. 2.1), ‘’ (Def.

20exh or 20), and  ∗ (Def. 28).
• For any set of events, define the set of objective events∗ := {∗ :  ∈ }.
• For any set  of acts, define the set of functions  ∗ := {∗ :  ∈ }.
• For any  ∈  and  ∈  ∗ , let  ∈  be the act given by ()

∗ =  . (‘’

was also used for the representation of an objective act  ∈ F; see Def. 5.)

Proof of Prop. 1. Just take  =  = 0,  =  0 and  = 0 in Ax. 2. ¥

Proof of Prop. 2. Ax. 6 implies existence of a robust algebra R on S. The
claim holds as R is robust and as any two constant acts with same outcome (on

possibly distinct state spaces) are corresponding R-determined acts. ¥

Proof of Prop. 3. Assume Ax. 2, 4, 5 and 6, and let  0 ∈  and  ⊆ ∩0.
I suppose  %  and show that  %0  (the converse is analogous). Using Ax.

5, pick outcomes  Â  in  and 0 Â0 
0 in 0. Using independence between

outcome and state awareness, pick a  ∈  with  =  and  = 0. As  Â 

we have  Â  by Prop. 2. As  %  and  Â , by Ax. 4 \ % \.
So \ % \ by Ax. 2 applied to the event  ∪  ⊆  ∩ . Hence

0
0
0\ %0 

0


0
0\ by Ax. 4. So  %0 . ¥

Proof of Prop. 5. Assume Ax. 2, 4 and 5. Consider a robust algebra R on S,
 0 ∈  ,  ⊆ , and 0 0 ⊆ 0, such that  and 0 represent an identical
objective event ̃ ∈ R, and  and 0 also represent an identical ̃ ∈ R. I show
that  %  ⇒ 0 %0 

0 (the converse direction ‘⇐’ holds analogously). Let
 % . Using Ax. 5, pick outcomes  Â  in  and 0 Â0 

0 in 0. Using

independence between outcome and state awareness, pick an  ∈  with  = 

and  = 0. As  Â  we have  Â , by Prop. 2 (more exactly, a version of

Prop. 2 based not on Ax. 6, but only on the existence of a robust algebra). Also,

as  %  and  Â , by Ax. 4 \ % \. So 0\0 % 0\0,
because R is robust, \ and 0\0 are corresponding R-determined acts
(as both stem from theR-measurable function ̃S\̃), and \ and 0\0
are also corresponding R-determined acts (as both stem from the R-measurable
function ̃S\̃). As 0\0 % 0\0 and  Â , by Ax. 4 

0 % 
0. So

0 %0 
0, by Prop. 3 (more precisely, a version of Prop. 3, like before). ¥

Proof of Prop. 4. Assume Ax. 2. Let  0 ∈  and  ⊆  ∩ 0. We let  be

non-null in  and prove non-nullness in 0. By assumption, there are   ∈  such

that \ = \ and  6∼ . Pick  0 0 ∈ 0 such that  =  0,  = 0, and
 00\ = 00\. As  6∼ , by Ax. 2 

0 6∼0 
0. So  is non-null in 0. ¥
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Proof of the claim in footnote 26. Assume the condition in footnote 26 and

Ax. 1, 2 and 6. Ax. 4* clearly implies Ax. 4. Now assume Ax. 4, and let

 0  0      0 0 satisfy the premises of Ax. 4*. We must show that
\ % \ ⇔ 0

0
\ %0 

0


0
\. By assumption we may pick ̂ ̂0 ∈ 

and   ∈ ̂ ∩ ̂0 such that  ⊆ ̂, 0 ⊆ ̂0, and  6∼̃ . So by Ax. 1

 Ẫ  or  Ẫ ; w.l.o.g. let  Ẫ . Hence also  Â̂0  by outcome-preference

stability (see Prop. 2 which uses Ax. 6). Now \ % \ is equivalent to
\ %̂ \ by preference stability (see Prop. 1 which uses Ax. 2), hence
is equivalent to \ %̂ \ by Ax. 4. Similarly, 0

0
\ %0 

0


0
\ is

equivalent to 0
0
\ %̂0 

0


0
\, hence to \ %̂0 \. So it remains to

show \ %̂ \ ⇔ \ %̂0 \. This holds by preference stability.
¥

C Proof of Theorem 1 under exhaustive states

Proof strategy: This appendix assumes exhaustive states (the general proof

follows in App. D). While a relation % ( ∈  ) may violate Savage’s Archimedean

axiom, we will ‘extrapolate’ it to a relation to which ‘Savage applies’. To get an

idea, note that for incorporable objective events 1 2  ⊆ S, we can successively
refine the state space  to 1 =  ∨ {1 1} (for a context 1), then to 2 =

1 ∨ {2 2} (for a context 2), and so on. In each step another  becomes

representable, and the new relation % remains faithful to the earlier ones if it

has the same outcome space. These refinements do not lead far enough: if 

was finite, then all  are finite, hence still too small ‘for Savage’. We will thus

go further: we will faithfully extrapolate each % to a relation whose state space

incorporates infinitely many and indeed all incorporable  ⊆ S. This high state
sophistication is purely hypothetical: it might never be reached by the agent in

any context in  . The proof proceeds as follows, leaving out various difficulties:

• Sufficiency of the axioms is established by (i) showing that under Ax. 1—6
each extrapolated relation, denoted %+ , satisfies Savage’s axioms, (ii) de-
ducing a EU representation of each %+ via Savage’s Theorem in Kopylov’s

(2007) version, and (iii) deducing suitable EU representations ( ) of the

original relations % ( ∈  ) jointly satisfying rules R1—R3.

• Necessity of the axioms is trivial in the case of the ‘local’ Ax. 1, 3 and 5,
while the ‘non-local’ Ax. 2, 4 and 6 are proved using rules R1—R3.

• The uniqueness property of the representation is established by reducing
it to the uniqueness property when representing the extrapolated relations,

which is in turn obtained via Savage’s Theorem in Kopylov’s (2007) version.

Reformulating R3. Hereafter whenever we refer to R3, we will take this revision

rule to be stated in the following (equivalent) way, which draws on the notion of
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an ‘agreed function’:

Definition 34 Functions  on 2
 ( ∈  ) agree on a given function  on a

set of objective events R ⊆ 2S — and  is agreed among the s — if the s

agree on ’s value at each  ∈ R (cf. Def. 29), or equivalently, if  is a possibly

domain-restricted version of the objective agreement of the s (cf. Def. 30).

R3 (equivalent restatement): The s agree (at least) on a fine probability

measure on an algebra on S.

C.1 Definition of extrapolated preferences

Asmentioned, we extrapolate each relation% by incorporating into the state space

all incorporable objective events. In fact, we even incorporate all weakly incorpor-

able objective events (in a shortly defined sense), because weakly incorporable

objective events are more canonical. They form an algebra, and are probably the

largest class suitable for incorporation along with preference extrapolation.

Definition 35 An objective event  ⊆ S is weakly incorporable if there is
a finite partition P of S at least as fine as {} which the agent can always
represent after (if necessary) refining states in a preference-neutral way: for all

contexts  ∈  there is a 0 ∈  (possibly equal to ) with 0 = ∨P and with %0

faithful to %. Let I := { ⊆ S :  is weakly incorporable}.

Remark 27 Incorporability implies weak incorporability: here P = {}.

Remark 28 The set I of weakly incorporable objective events is an algebra on S:
(i) S ∈ I; (ii) if  ∈ I (in virtue of partition P) then  ∈ I (in virtue of P);
(iii) if   0 ∈ I (in virtue of P and P 0 respectively) then  ∩  0 ∈ I (in virtue of
P ∨ P 0).

Given what was announced, one might expect that I refine each state space 

to a partition 0 of S (a hypothetical subjective state space) in which all  ∈ I
are representable, and to extrapolate the relation % to one on 

0
 . It will in fact

be easier to work not with a (hypothetical) subjective state space 0, but with the
objective state space S. So I will extrapolate % to a relation on the set 

S
 of

‘semi-objective acts’, which map objective states to subjective outcomes.

Definition 36 A partition of S harmlessly refines another one  if it is the

join of  and some finite partition of S into weakly incorporable objective events.

Definition 37 For a contexts  ∈  , the extrapolated relation %+ on S
 is

given as follows:  %+  if and only if  %  for some context  ∈  such that

(i)   ∈  ∗ (so  and  are defined) and (ii)  harmlessly refines .
53

53Clause (ii) ensures that %+ is intimately linked to (i.e., ‘extrapolates’) %.
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C.2 Sufficiency of the axioms

Using extrapolated preferences, I now gradually prove sufficiency.

Definition 38 The join R∨R0 of algebras R and R0 on S is the smallest algebra
A ⊇ R ∪R0 on S, i.e., the closure of R ∪R0 under complement and finite union.

An extrapolated relation %+ may still violate one of Savage’s axioms, by failing
completeness: many functions in S

 may be non-ranked. But %+ will be shown
to be complete among functions measurable w.r.t. the ‘extrapolated algebra’:

Definition 39 The extrapolated algebra for context  ∈  is the set E of ob-
jective events that are representable after a harmless state refinement: E := {∗ :
 ⊆  for some harmless refinement  of }.

Lemma 3 For all contexts  ∈  , E is an algebra on S, characterizable as
(1) the join (2)∗ ∨ I of the algebra of representable objective events (2)∗ (=

{∗ :  ⊆ }) and the algebra I,
(2) the union ∪∈ : harmlessly refines (2 )∗ of each algebra (2 )∗ of represent-

able objective events after some harmless refinement.

I now recall Savage’s theorem in the generalized version in which acts are

measurable w.r.t. an arbitrary event algebra, not necessarily a -algebra, let alone

the power set of the state space. It operates in a generalized framework:

Definition 40 A generalized Savage structure is a tuple ( (A)%) of a
non-empty finite set  of ‘outcomes’, a non-empty set  of ‘states’ endowed

with an algebra A on  (the ‘event algebra’), and a ‘preference’ relation % on
the set of A-measurable functions from  to  (‘acts’).

An ordinary Savage structure (%) is identified with the generalized one
( ( 2)%). In a generalized Savage structure ( (A)%) with sets of acts
denoted  , Savage’s well-known postulates can be stated as follows.

P1: % is a transitive and complete relation on  .

P2: For all    0 0 ∈  and  ∈ A, if  =  0,  = 0, \ = \ and
 0\ = 0\, then  %  ⇔  0 % 0.

P3: For all   ∈  and non-null  ∈ A,  %  ⇔  % .54

P4: For all  ∈ A and all  Â  and 0 Â 0 in , \ % \ ⇔
0

0
\ % 

0


0
\.

54Elements of  are identified with constant acts. An event is null if all acts that agree outside

it are indifferent. An act (or outcome)  is weakly preferred to another  given  ∈ A — written
 %  — if  0 % 0 for some acts  0 and 0 such that  =  0,  = 0 and  0\ = 0\.
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P5: There exist   ∈  such that  Â .

P6: For all  Â  in  and  ∈ , one can partition  into some 1   ∈ A
such that \

Â  and  Â \
 for all .

Lemma 4 (Savage’s Theorem for arbitrary event algebras; see Kopylov 2007) A

generalized Savage structure ( (A)%) satisfies Ax. P1—P6 if and only if there
exist a non-constant utility function  :  → R and a fine probability measure

 : A→ [0 1] such that  %  ⇔ E ( ◦) ≥ E ( ◦ ) for all   ∈  . Further,

 is unique and  is unique up to increasing affine transformation.55

Lemma 5 If Ax. 1—6 hold, then for each context  ∈  Ax. P1—P6 hold for the

generalized Savage structure ( (SA)%) in which (i) A is E or more generally
any algebra such that R ⊆ A ⊆ E for some algebra R as in Ax. 6, and (ii) % is

%+ restricted to the set of acts  = { ∈ S
 :  is A-measurable}.

Lem. 5’s proof rests on some technical lemmas (shown in App. F):

Lemma 6 Under Ax. 2, a relation % is faithful to another % if  ⊇  and

 harmlessly refines .

Lemma 7 Under Ax. 2, whenever  %+  (where  ∈  and   ∈ S
 ), then

(a)  %  for all (not just some)  ∈  satisfying (i)—(ii) in Def. 37,

(b)  %  for some  ∈  such that (i)—(ii) in Def. 37 hold and % is faithful

to % (in particular,  ⊇ ).

Lemma 8 For any context  ∈  and finite set B ⊆ E, there is a context  ∈ 

such that (i) all  ∈ B are representable (i.e., B ⊆ (2 )∗), (ii)  harmlessly
refines , and (iii) % is faithful to %.

Lemma 9 For all contexts  ∈  and finite sets G of E-measurable functions from
S to , there is a context  ∈  such that (i) G ⊆  ∗ , (ii)  harmlessly refines
, and (iii) % is faithful to %.

Lemma 10 Assume Ax. 2 and 5 and let  ∈  . For all acts   and events

 of Lem. 5’s generalized Savage structure, the conditional preference  % ,

i.e.,  %+ , holds if and only if  %
 holds for some  ∈  such that

  ∈  ∗ ,  is representable in context  , and  harmlessly refines . The

equivalence remains true when also requiring that % is faithful to %.

55Kopylov proves this theorem for the case that A is a mosaic, a more general structure than
an algebra. My statement uses the condition that  is fine, which in the algebra case is equivalent

to his condition that  is finely ranged. In Savage’s special case A = 2 , a probability measure
 on A is fine if and only if it is atomless, and if and only if for all  ∈ A and 0    1 there

is a  ⊆  in A such that  () =  (). In general, fineness is weaker than atomlessness.
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Lemma 11 Assume Ax. 2 and let  ∈  . An event  in Lem. 5’s generalized

Savage structure is non-null if and only if  is a non-null event in some context

 ∈  such that  is representable (i.e.,  is defined) and  harmlessly refines

. The equivalence remains true when also requiring that % is faithful to %.

Proof of Lem. 5. Assume Ax. 1—6. Let  RA be as specified. I show P1—P6

for the extrapolated relation %+ restricted to  := { ∈ S
 :  is A-measurable}.

Claim 1: P1 holds. To show completeness, let   ∈  . Using Lem. 9, pick

a  ∈  such that   ∈  ∗ and  harmlessly refines . By Ax. 1,  %  or

 %  . In the first case  %+ , in the second  %+  . To show transitivity,

let    ∈  such that  %+  and  %+ . Using Lem. 9, pick a  ∈  such

that    ∈  ∗ and  harmlessly refines . So, as  %+  and  %+ , we have

 %  and  %  by Lem. 7. Hence,  %  by Ax. 1, and so  %+ .

Claim 2: P2 holds. Consider    0 0 ∈  and  ∈ A such that  =  0,
 = 0, \ = \ and  0\ = 0\. Pick an  ∈  taking one value on 

and another on  ( exists as || ≥ 2 by Ax. 5). Using Lem. 9, pick a  ∈ 

such that    0 0  ∈  ∗ and  harmlessly refines . As   
0 0 ∈  ∗ , the

acts     
0
  

0
 ∈  are defined; and as  ∈  ∗ , the event  is representable

in context  , so that  is defined (the sole purpose of introducing  was indeed

to ensure representability of ). Note that ()
= ( 0)

, () = (0)
,

( )\
= ()\ and (

0
 )\

= (0)\ . So, by Ax. 2 (or just 2*),  %

 ⇔  0 % 
0
 . This equivalence reduces to  %+  ⇔  0 %+ 0 by Lem. 7.

Claim 3: P3 holds. Let   ∈ . Let  ∈ A be non-null. I show  %+  ⇔
 %+ . By Lem. 11,  is non-null for a  ∈  such that  is representable,

 =  ∨ P with a finite partition P ⊆ I of S, and % is faithful to %. First,

if  %+ , then  %  by Lem. 7, so  %  by Ax. 3 and  ’s non-nullness,

hence  %+  by Lem. 10. Now let  %+ . By Lem. 10,  %
 for a  ∈ 

such that  is representable,  =  ∨ Q with a finite partition Q ⊆ I of S,
and % is faithful to %. Using Lem. 8, pick  ∈  such that P ∪ Q ⊆ (2)∗,
 =  ∨P 0 with a finite partition P 0 ⊆ I of S, and % is faithful to %. W.l.o.g.

 and  equal  (by independence between outcome and state awareness) and

P 0 refines P and Q (otherwise replace P 0 by P 0 ∨ P ∨Q). Now % is faithful to

% and %, each time by Lem. 6, using that  ⊇  =  (= ) and that

 =  ∨ P 0 =  ∨ P 0 (since each set equals  ∨ P 0 as P 0 refines P and Q). As
 (⊆ ) is non-null and % is faithful to % ,  (⊆ ) is non-null. As  %



and % is faithful to %,  %
. So  %  by Ax. 3. Thus  %+ .

Claim 4: P4 holds. Let  ∈ A and   0 0 ∈  such that  Â+ 

and 0 Â+ 0. I show S\ %+ S\ ⇔ 0
0
S\ %+ 0

0
S\ Via Lem. 9,

pick a  ∈  such that S\ S\ 0
0
S\ 

0


0
S\ ∈  ∗ and  harmlessly

refines . By Lem. 7,  Â  and 0 Â 0. So the claimed equivalence re-
duces to (S\) % (S\) ⇔ (0

0
S\) % (

0


0
S\) , i.e., 

\
%
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\

⇔ 0
0
\

% 
0

0\

. This holds by Ax. 4.

Claim 5: P5 holds. Using Ax. 5, pick  Â  in . Clearly, 
∗ Â+ ∗.

Claim 6: P6 holds. Let  Â+  in  and  ∈ . As  %+ , we have  % 

for a  ∈  such that   ∈  ∗ ,  =  ∨P for a finite partition P ⊆ I of S, and
% is faithful to %. Note  ∈  ; and  6%  as  6%+  . So  Â  . As R
(⊆ A) is as in Ax. 6, one can partition S into 1   ∈ R ⊆ A such that, for

a 0 ∈  with 0 =  ∨ {1  } and 0 ⊇  , (0)0\()0()0 Â0 0 and

0 Â0 (0)0\()0()0 for all , i.e., (S\

)0 Â0 0 and 0 Â0 (S\


)0 for

all . So (as 0 harmlessly refines , being the join of  and P∨{1  } ⊆ I),
S\


Â+  and  Â+ S\


for all .56 ¥

Given Ax. 1—6, for each  ∈  we now use Lem. 4 and 5 to pick a utility

function  on  and a fine probability measure 
+
 on E which represent the

extrapolated relation %+ on { ∈ S
 :  is E-measurable}:

 %+  ⇔ E+ ( ◦ ) ≥ E+ ( ◦ ) for all E-measurable   ∈ S
 .

Each +
 induces a probability measure  on the subjective event space 2

 via

() := +
 (

∗) for all  ⊆ .

The next four lemmas complete the sufficiency proof by establishing that the

functions  and  ( ∈  ) have all properties required in Thm. 1.

Lemma 12 Under Ax. 1—6, the above-defined ( )∈ is an EU rationalization.

Lemma 13 Under Ax. 1—6, the above-defined functions  satisfy R1.

Lemma 14 Under Ax. 1—6, the above-defined functions  satisfy R2.

Lemma 15 Under Ax. 1—6, for each algebra R as in Ax. 6,

(a) all above-defined measures + have identical restriction  := +
 |R,

(b) the above-defined measures  satisfy R3 in virtue of  as the fine agreed

probability measure.

I begin by proving the first of these four ‘sufficiency lemmas’.

Proof of Lem. 12. Assume Ax. 1—6. Let  ∈  and   ∈ . Let , 

and +
 be as above. I show  %  ⇔ E( ◦ ) ≥ E( ◦ ) The left side

56To make the last step, one needs to first decompose each strict preference (Â0) into a

weak preference (%0) without weak dispreference ( 6-0), then infer corresponding extended weak

preferences (%+ ) without weak dispreference (6-+ ) using Lem. 7, which implies extended strict
preferences (Â+ ).
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reduces to ∗ %+ ∗ by Lem. 7, and the right side to E+ ( ◦ ∗) ≥ E+ ( ◦ ∗)
because, letting  : S →  map any  ∈ S to its subjectivization () = , we

have ∗ =  ◦ , ∗ =  ◦ , and  is 
+
 ’s image under . To complete the proof,

note ∗ %+ ∗ ⇔ E+ ( ◦ ∗) ≥ E+ ( ◦ ∗) by definition of  and + . ¥

Proving the other three ‘sufficiency lemmas’ requires further results. I begin

with two cornerstone results from the literature:

Lemma 16 (Niiniluoto 1972, Wakker 1981) Every fine and tight qualitative prob-

ability relation on an algebra A on S (not necessarily a -algebra) is uniquely

representable by a probability measure on A.

Lemma 17 (Wakker 1981, Kopylov 200757) A probability measure on an algebra

A on S (not necessarily a -algebra) is fine if and only if the represented qualitative
probability relation is fine and tight.

I also need 5 technical lemmas (proved in App. F), the first 3 about the

extrapolated belief relation over objective events induced by %+ and still labelled
‘%+ ’.

Lemma 18 (extrapolated comparative beliefs) Under Ax. 2, 4 and 5, for all

 ∈  and  ⊆ S,  %+  if and only if  %  for some  ∈  such that

 and  are representable (i.e.,  and  are defined) and  harmlessly refines

. The equivalence remains true when also requiring % to be faithful to %.

Lemma 19 Under Ax. 2, 4, 5 and 6, whenever  %+  (where  ∈  and

 ⊆ S), then  %  for each (not just some) context  ∈  in which  and

 are representable (so that  and  are defined) and  harmlessly refines .

Lemma 20 Under Ax. 2, 4 and 5, the extrapolated relations %+ ( ∈  ) agree (as

belief relations on 2S) on each robust algebra R of incorporable objective events.

Lemma 21 Under Ax. 1—6, the restriction of the above-defined measure +
 to

an algebra R of type in Ax. 6 is (a) fine, and (b) the same for all  ∈  .

Lemma 22 Given Ax. 1 and 2, for any contexts   ∈  , if  harmlessly refines

, then E = E , and if moreover % is faithful to % then %+ = %+ .

Proof of Lem. 15. Assume Ax. 1—6. Let R be as in Ax. 6, and  and +


( ∈  ) as above. By Lem. 21,  := +
 |R is fine and independent of  ∈  .

I show  is agreed. Let  ∈ R and  ∈  . I must show existence of a  ∈ 

57Lem. 17 is implicit in Wakker (1981) and a special case of Kopylov’s (2007) Thm. A.1.
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such that  =  ∨ {},  ∗ extends  ∗ , and  ∗ () = (). As  ∈ R,  is

incorporable; so pick a  ∈  such that  =  ∨ {} and % is faithful to %.

By Lem. 22, E = E and %+ = %+ . So +
 = +

 . Thus 
∗
 (= +

 |(2 )∗) extends
 ∗ (= +

 |(2)∗). Finally,  ∗ () = +
 () = (). ¥

Proof of Lem. 14. Assume Ax. 1—6. Let  
+
 ( ∈  ) be as above,   ∈  ,

and  := ∩ . If  is null in both contexts,  and  are zero, so proportional,

on 2. Now let  be non-null in one, hence by Prop. 4 both, contexts. Let R be

as in Ax. 6. Put A := {∗ :  ⊆  ∨ P for a finite partition P ⊆ R of S}. Here
 ∨ P joins partitions of distinct sets ∗ and S; Def. 21 still applies.
Claim 1: The measures +

 and +
 are ordinally equivalent on A. Note

A is an algebra on ∗, not S.58 Let  ∈ A. I show +
 () ≥ +

 () ⇔
+
 () ≥ +

 (), or equivalently (as 
+
 represents %+ and +

 represents %+ )
 %+  ⇔  %+ . As  ∈ A, we may pick finite partitions PP ⊆ R
of S such that  ∈ (2∨P)∗ and  ∈ (2∨P)∗. Clearly, P := P ∨ P is again

a finite partition of S. Using that all  ∈ P are incorporable (as P ⊆ R), pick
0  0 ∈  such that 0 = ∨P and  0 =  ∨P. Now  and  are representable

in context 0 (as 0 refines  ∨ P); so  %+  ⇔ 0 %0 0 by Lem. 18 and

19. Similarly,  and  are representable in context  0; so  %+  ⇔  0 % 0  0.

It remains to show 0 %0 0 ⇔  0 % 0  0. This holds by comparative-belief

stability (Prop. 3), since 0 =  0 and 0 =  0 as 0 and  0 agree within ∗

(⊇ ).

Claim 2:  and  are proportional on 2
. By Claim 1, the conditional

probability measures +
 (·|∗) and +

 (·|∗) are ordinally equivalent on A. Their
restrictions +

 (·|∗)|A and +
 (·|∗)|A are probability measures on A (an algebra

on ∗), which are fine as +
 and +

 are fine. So +
 (·|∗)|A = +

 (·|∗)|A by
Lem. 16 and 17. Hence, + is proportional to 

+
 on A, and thus on (2)∗ (⊆ A).

So,  is proportional to  on 2
. ¥

Proof of Lem. 13. Assume Ax. 1—6. Let  
+
 ( ∈  ) be as above. Fix   ∈

 . Put  :=  ∩ . For all   ∈ ,  %  ⇔  %  by outcome-preference

stability (Prop. 2); so () ≥ ()⇔ () ≥ () by Lem. 12. If  (and so

) is constant on , then  is an increasing affine transformation of  on .

Now let  (and so ) be non-constant on . Let R be as in Ax. 6. As ( 
+
 )

represents %+ restricted to the E-measurable acts, (|  +
 |R) represents %+

restricted further to R-measurable acts mapping into , i.e., to  := { ∈ S : 

isR-measurable}. For analogous reasons, ( |  +
 |R) represents%+ restricted to

 . (In fact +
 |R = +

 |R by Lem. 15.) Next I show that %+ and %+ coincide on
 . Let   ∈  . As   ∈ E we may by Lem. 9 pick a 0 ∈  such that   ∈  ∗0
and 0 harmlessly refines . Analogously, as   ∈ E we may pick a  0 ∈  such

58A is the join of two algebras on ∗: {∗ :  ⊆ } and { ∩ ∗ :  ∈ R} (R’s trace in ∗).
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that   ∈  ∗ 0 and  0 harmlessly refines  . Now  %+  ⇔  %+ , as by Lem.

7 this reduces to 0 %0 0 ⇔  0 % 0  0, which holds since  (= (0)
∗ = ( 0)∗)

and  (= (0)
∗ = ( 0)∗) are measurable w.r.t. a robust algebra. As just shown,

(|  + |R) and ( |  + |R) represent the same relation on  ; note also that

| and  | are non-constant and +
 |R and +

 | are fine. So | is an

increasing affine transformation of  | by Lem. 5. ¥

C.3 Necessity of the axioms

I now show that our representation implies all axioms. I start by the ‘local’ Axioms

1, 3 and 5, and then turn to the ‘global’ (cross-context) Axioms 2, 4 and 6.

Lemma 23 Given an EU representation, Ax. 1, 3 and 5 hold.

Proof. If ( )∈ is such a representation, then Ax. 1 holds trivially, Ax. 5
holds by non-constancy of all , and Ax. 3 holds by definition of conditional

preference (using that non-null events  ⊆  have probabilities () 6= 0). ¥

Lemma 24 If ( )∈ is a representation in Thm. 1’s sense, Ax. 2 holds.

Proof. Let ( )∈ be a representation. Let  0 ∈  ,   ∈ , 
0 0 ∈ 0,

and  ⊆  ∩ 0, such that  =  0,  = 0, \ = \ and  00\ = 00\.
I must show  %  ⇔  0 %0 

0, i.e., E( ◦ ) ≥ E( ◦ ) ⇔ E0 (0 ◦  0) ≥
E0 (0 ◦ 0), or

R

 ◦  d ≥

R

 ◦  d ⇔

R

0 ◦  0 d0 ≥

R

0 ◦ 0 0

as \ = \ and  00\ = 00\. The latter holds as (i)  is proportional

to 0 within , (ii)  =  0 and  = 0, and (iii)  is an increasing affine

transformation of 0 on  ∩0 (where by (ii)—(iii)  ◦  is an increasing affine
transformation of 0 ◦  0 on , and  ◦  is one of 0 ◦ 0 on ). ¥

Lemma 25 If ( )∈ is a representation in Thm. 1’s sense, Ax. 4 holds.

Proof. Assume ( )∈ is a representation. Let  0 ∈  such that  :=  =

0, let  ⊆ , and consider  Â  in  and 0 Â0 0 in 0. I claim

that \ % \ ⇔ 0
0
\ %0 

0


0
\. Noting that ()  () (as

 Â ) and 0(
0)  0(

0) (as 0 Â0 
0), the claimed equivalence reduces to the

equivalence () ≥ () ⇔ 0() ≥ 0(), which holds as  is proportional

(in fact, identical) to 0 on the full domain 2
 (= 2 = 20 ). ¥

Lemma 26 If ( )∈ is a representation in Thm. 1’s sense, with a fine agreed
 : R→ [0 1] in R3, then Ax. 6 holds in virtue of algebra R.
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Proof. Let ( )∈ ,  and R be as assumed.

Claim 1: All  ∈ R are incorporable. Let  ∈ R and  ∈  . As  is agreed,

there is a  ∈  where  =  ∨ {} and  ∗ extends 
∗
 . W.l.o.g.  = 

(by independence between outcome and state awareness); so % is faithful to %,

using R1 and the fact that  ∗ extends 
∗
 .

Claim 2: R is robust. Let 1 2 ∈  . Consider R-determined acts 1 1 ∈ 1

and 2 2 ∈ 2 such that 
∗
1 = ∗2 =:  and 

∗
1 = ∗2 =: . I show that 1 %1 1 ⇔

2 %2 2, i.e., E1 (1 ◦1) ≥ E1 (1 ◦1)⇔ E2 (2 ◦2) ≥ E2 (2 ◦2) As 
and  areR-measurable and  ∗() = () for all  ∈ {1 2} and all  ∈ R∩(2 )∗,
the desired equivalence reduces to E(1 ◦ ) ≥ E(1 ◦ ) ⇔ E(2 ◦ ) ≥
E(2 ◦ ), which holds by R1 and the fact that 1 ∩2 ⊇ (1) (2).

Claim 3 : R has the additional property required in Ax. 6. Let  ∈  ,  Â 

in , and  ∈ . For any   0, pick (i) a finite partition P ⊆ R of S such that
() ≤  for all  ∈ P (using ’s fineness) and (ii) a  ∈  such that  = ∨P,

 = , and 
∗

extends  ∗ (using ’s agreedness and the independence between

outcome and state awareness); let    ∈  be the acts equivalent to  and

 respectively. It suffices to show that (*) for small enough   0, E ( ◦
(( )\ ))  E ( ◦ ) for all  ∈ P, and (**) for small enough   0,

E ( ◦ )  E ( ◦(()\


)) for all  ∈ P As all  have same domain

as , they are increasing affine transformations of . W.l.o.g. let  =  =: 

for all   0. Given   0, each ( )\
( ∈ P) differs from   at most

on , hence at most with (-)probability . Put ∆ := max∈
|()− ()|.

Now
¯̄
E ( ◦ (( )\


))− E ( ◦  )

¯̄
≤ ∆ for all  ∈ P This implies

(*) since E ( ◦  )) = E( ◦ )  E( ◦ ) = E ( ◦ ) where the ‘’
holds as  Â , and both ‘=’ hold as 

 () is equivalent to  () and  ∗ extends
 ∗ . An analogous argument shows (**). ¥

C.4 Uniqueness of the representation

I now prove uniqueness, based on two technical lemma (shown in App. F):

Lemma 27 If a probability measure  on an algebra R is agreed among probability
measures  on 2

 ( ∈  ) which satisfy R2, then for each  ∈  there is a

probability measure  on R := R ∨ (2)∗ which extends all  ∗ for which  is

the join on  and a finite partition P ⊆ R (so  extends  as  is agreed).

Lemma 28 If ( )∈ is a representation in Thm. 1’s sense with a fine agreed
measure  on R, and  and R ( ∈  ) are as in Lem. 27, then, for all  ∈  ,

( ) represents the restriction of %+ to { ∈ S
 :  is R-measurable} in Lem.

4’s sense.
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Lemma 29 If ( )∈ and ( 0
 

0
)∈ are representations in Thm. 1’s sense,

then each  equals 
0
 and each  is an increasing affine transformation of 

0
.

Proof. Let ( )∈ be a representation, with a fine agreed measure  : R →
[0 1]; so Ax. 1—6 hold. Let  and R ( ∈  ) be as in Lem. 27 and 28. Let

( 0
 

0
)∈ be the representation defined in in App. C.2 under Ax. 1—6 using the

objects %+ and +
 (it was formerly denoted ‘( )∈ ’). Fix  ∈  . I show

 0
 =  and  0

 =  +  with   0 and  ∈ R. As ( 0
 

+
 ) represents %+

on { ∈ S
 :  is E-measurable} (in Lem. 4’s sense), ( 0

 
+
 |R

) represents the

same relation as ( ) on { ∈ S
 :  is R-measurable} by Lem. 28. So by

Lem. 4  = +
 |R

and  is an increasing affine transformation of 
0
. Finally,

 =  0
 : for all  ⊆ , () =  ∗ (

∗) = (
∗) = +

 (
∗) =  0

(). ¥

D Proof of Theorem 1 for the general case

From now on states can be non-exhaustive. I prove Thm. 1 by reduction to the

case of exhaustive states where it has been established. Let Π be the partition of

 into non-empty sets of contexts such that  0 ∈  belong to the same set in Π

if and only if S = S0. This yields for each ∆ ∈ Π a (sub)structure ( %)∈∆
with exhaustive states, called the ∆-substructure, to which we may apply Thm.

1; let S∆ be its set of objective states. For all  ∈  , let ∆ be the member of

Π containing . Generalizing earlier objects, let %+ , E and +
 be defined as in

App. C, but w.r.t. the ∆-substructure (which has exhaustive states, ensuring

well-definedness). So %+ is a relation on S
 = 

S∆
 (not S

 ), and E is an
algebra on S = S∆

(not S). The trace in S0 (⊆ S) of an algebra R on S is the
algebra on S0 given by R|S0 := { ∩ S0 :  ∈ R}.59

D.1 Sufficiency of the axioms

Our reductive proof draws on a technical lemma shown in App. F:

Lemma 30 If Ax. 1—6 hold, then they hold for each ∆-substructure (∆ ∈ Π).

Now assume Ax. 1—6. By Lem. 30, each ∆-substructure (∆ ∈ Π) satisfies Ax.

1—6. So by Thm. 1 each ∆-substructure (∆ ∈ Π) has a representation ( )∈∆
in Thm. 1’s sense. Joining these representations together, we obtain a grand

system ( )∈ , which is now shown to represent the general structure.

59A direct, non-reductive proof of Thm. 1 would also work, by generalizing App. C’s proof

strategy and defining the objects I, %+ , E and + ( ∈  ) directly relative to the general

structure; so %+ would be a relation on S
 (not 

S
 ), and E an algebra on S (not S).
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Lemma 31 Under Ax. 1—6, the above-defined ( )∈ is an EU rationalization.

Proof. This property is inherited from the subsystems ( )∈∆ (∆ ∈ Π). ¥

I now reduce R3 to substructures, using another lemma shown in App. F:

Lemma 32 Given Ax. 1—6 and the above-defined functions , if R is an algebra

as in Ax. 6 and for each ∆-substructure (∆ ∈ Π) ∆ is a fine probability measure

on R|S∆ agreed among ()∈∆, then the assignment  7→ ∆( ∩ S∆) defines a
fine probability measure on R independent of ∆ ∈ Π and agreed among ()∈ .

Lemma 33 Under Ax. 1—6, the above-defined measures  satisfy R3.

Proof. Assume Ax. 1—6, with R as in Ax. 6. By Lem. 32 it suffices to show

that for each ∆ ∈ Π there is a fine probability measure ∆ on R|S∆ agreed among
the above-defined (∆-)family ()∈∆. Let ∆ ∈ Π. As ()∈∆ satisfies R3, some
fine measure ∆ is agreed among ()∈∆. By Lem. 30’s proof, the ∆-substructure
satisfies Ax. 6 in virtue of the trace algebra R|S∆. So by Thm. 1’s proof we may
w.l.o.g. let ∆ have domain R|S∆. ¥

Lemma 34 Under Ax. 1—6, the above-defined functions  satisfy R2.

Proof. The proof states literally like that of Lem. 14, the corresponding lemma

under exhaustive states.60 ¥

I finally prove R1, again using a technical lemma shown in App. F:

Lemma 35 Under Ax. 1—6, for any contexts  0 ∈  , algebra R as in Ax. 6 and

R-measurable functions   : S→  ∩0, S %+ S ⇔ S0 %
+
0 S0 .

Lemma 36 Under Ax. 1—6, the above-defined functions  satisfy R1.

Proof. Suppose Ax. 1—6. Let  0 ∈  . Put  :=  ∩0. Let  and 0 be the

above-defined functions. W.l.o.g. they are both non-constant on .61 Let R be

as in Ax. 6, and  a (by Lem. 33 and its proof existing) fine agreed measure on R.
Let ≥ be the relation on  := { ∈ S :  is R-measurable} given by  ≥  ⇔
S %+ S for some (hence by Lem. 35 any)  ∈ { 0}. To show that | is an
60Two remarks are due. First, in Claim 1 0 (  0) automatically belongs to ∆ (∆ ), and

the Lemmas 18 and 19 (which had been stated under exhaustive states) are applied to the ∆-

(∆ -)substructure (with indeed have exhaustive states). Second, Lem. 4 is applied to the general

structure; although it had been stated under exhaustive states, it holds in general, as one easily

checks.
61The argument is like in the proof of Lemma 13, but using Lem. 31 rather than 12.
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increasing affine transformations of 0 | , I prove that (|  ) and (0|  ) both
represent ( ()≥) in Lem. 4’s sense. Let  ∈ { 0}. I show E( ◦ ) ≥
E( ◦ ) ⇔  ≥  for all   ∈  . As  ≥  reduces to S %+ S , hence to

E+ ( ◦ S ) ≥ E+ ( ◦ S ), it suffices to show that E( ◦ ) = E+ ( ◦ S )
for all  ∈  . Let  ∈  ; I prove (−1()) = +

 (
−1
S ()) for all  ∈  By Lem.

32 (and Lem. 33’s proof), we may write  = ∆
(· ∩ S) for a fine measure ∆

on R|S agreed among ()∈∆
. Not only ∆

, but also +
 |R|S is agreed among

()∈∆
, by Lem. 4 (applied to the ∆ -substructure). So ∆

= +
 |R|S . For any

 ∈ , (−1()) = ∆
(−1() ∩ S) = ∆

(−1S ()) = +
 (

−1
S ()) where the

first equality holds as  = ∆
(· ∩ S ), and the last one as ∆

= +
 |R|S . ¥

D.2 Necessity of the axioms and uniqueness

Necessity of Ax. 1—5 holds by the same arguments as under exhaustive states

(App. C). I now prove necessity of Ax. 6 and uniqueness of the representation,

both by reduction to substructures via this technical lemma (shown in App. F):

Lemma 37 If ( )∈ is a representation in Thm. 1’s sense (with a fine agreed
measure  on an algebra R), then each subsystem ( )∈∆ (∆ ∈ Π) represents

the ∆-substructure in Thm. 1’s sense (with a fine agreed measure ∆ on R|S∆
given by (·) = ∆(· ∩ S∆)).

Lemma 38 If ( )∈ and ( 0
 

0
)∈ are representations in Thm. 1’s sense,

then any  equals 
0
 and any  is an increasing affine transformation of 

0
.

Proof. This property follows via Lem. 37 from the uniqueness property for

substructures, which is guaranteed by Thm. 1 applied to substructures. ¥

Lemma 39 If ( )∈ is a representation in Thm. 1’s sense, with a fine agreed
measure on an algebra R, then Ax. 6 holds in virtue of algebra R.

Proof. Let ( )∈ and R be as specified. Let  ∈  ,  Â  in , and  ∈ .

Put ∆ := ∆. By Lem. 37, ( )∈∆ represents the ∆-substructure, with a fine
agreed measure on R|S∆. So by Lem. 26, Ax. 6 holds for this substructure in
virtue of algebra R|S∆. Hence one can partition S∆ into 1   ∈ R|S∆ and
pick a 0 ∈  where 0 =  ∨ {1  } (so any  is representable by an

 ⊆ 0), 0 ⊇  (so 0 contains acts 
0 equivalent to  and 0 equivalent to

), and  00\


Â0 
0 and  0 Â0 

0
0\


for all . Each  is in R|S∆; so

 = ∩S∆ for a  ∈ R. W.l.o.g. 1   partition S.62 Ax. 6 for the general
structure follows since 0 =  ∨ {1  } (as 0 =  ∨ {1  } and each
 matches  within S∆) and any  is, like , represented by . ¥
62Otherwise replace each  by \∪−1=1 if    and by (\∪−1=1)∪ (∪=1) if  = ,

which yields sets in R that are exclusive (by the ‘\∪−1=1’) and exhaustive (by the ‘∪(∪=1)’).
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E Proof of Theorem 2

I now reduce Thm. 2 to Thm. 1. The proof is stated so as to be useful also for

readers focusing on exhaustive states.

Let a (‘risky’) algebra R on S be given. When referring to Thm. 2’s third
revision rule, we take it to be stated in the following (equivalent) way: the functions

 agree (at least) on some fine probability measure on R.
First assume Ax. 1—5 and 6R—8R. As Ax. 6R—8R imply Ax. 6, Thm. 1’s rep-

resentation ( )∈ exists. This representation satisfies even Thm. 2’s modified
third rule, as the agreed measure can be defined on any algebra as in Ax. 6, e.g.,

on the risky algebra R, using Lem. 15 (under exhaustive states) or more generally
Lem. 33.

Conversely, if preferences admit Thm. 2’s representation, then Ax. 1—6 hold

by Thm. 1. In fact Ax. 6 holds in virtue of the risky algebra R, by Lem.26 (under
exhaustive states) or more generally Lem. 39. This implies Ax. 6R—8R. ¥

F Proof of the technical lemmas

Proof of Lem. 1. Assume fine states. Ax. 6̃ implies Ax. 6 in virtue of the

same R and the special case  = 0, because incorporability of all  ∈ R comes for

free (see Rem. 24) and whenever 1   ⊆  partition  and represent some

1   ∈ R, then we may choose 1   such as to partition S. Conversely,
assume Ax. 6 and 2. Pick an algebra R as in Ax. 6. To show that Ax. 6̃ holds

in virtue of R, consider  ∈  , acts  Â  in , and an outcome  ∈ . Pick

0 ∈  , 1   ⊆ 0 and  0 0 ∈ 0 as given by Ax. 6; so 
0
0\


Â0 

0 and
 0 Â0 

0
0\

 for all . By state fineness, 0 = ; so 1   ⊆  and (as

also 0 ⊇ ) 
0 =  and 0 = . So, by preference stability (see Prop. 1, which

uses Ax. 2), \


Â  and  Â \
for all . ¥

Lem. 2 is provable analogously to Lem. 1.

We now turn to App. C’s technical lemmas. Let states be exhaustive until

otherwise stated.

Proof of Lem. 3. Let  ∈  . LetR1 andR2 be the sets in (1) and (2) respectively.

Since R1 is obviously an algebra, it suffices to show that E = R1 = R2.

Claim 1: R1 ⊆ R2. Note that R2 includes (2
)∗ as  harmlessly refines

; and R2 also includes I as each  ∈ I is by definition representable in some
harmless refinement  of , meaning that  ∈ (2)∗. Hence R2 includes the join

R1 = (2
)∗ ∨ I.

Claim 2: R2 ⊆ E. Let  ∈ R2. Then we may pick a context  ∈  such that
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 harmlessly refines  and  ∈ (2 )∗. So  = ∗ for some  ⊆  . Hence,

 ∈ E.
Claim 3: E ⊆ R1. Let  ∈ E. Then we may pick a finite partition  ⊆ I of

S such that  = ∗ where  ⊆  ∨ P. Note that  can be represented as

 = ∪∈P ∪∈:∩∈ ( ∩ ) = ∪∈P( ∩ (∪∈:∩∈))

So  is a Boolean combination of members of I and (2)∗. Hence,  ∈ R1. ¥

Lemma 40 Given any finite set J ⊆ I, there is a finite partition P ⊆ I of S
refining each { } ( ∈ J ) such that for all contexts  ∈  there is a  ∈  for

which  =  ∨ P and % is faithful to %.

Proof. This can be shown by induction on the size of J . The claim holds trivially
if J = ∅, namely in virtue of the partition P = {S}. Now assume the claim holds
for some sets J1J2 ⊆ I, say in virtue of partitions P1 and P2 respectively. Then
the claim also holds for J1∪J2, namely in virtue of the partition J1∨J2, because
for any  ∈  we may first pick a context  0 ∈  such that  0 =  ∨ P1 and % 0

is faithful to %, and then pick a context  ∈  such that  =  0 ∨ P2 =  ∨ P
and % is faithful to % 0, hence to %. ¥

Proof of Lem. 6. Assume Ax. 2, and let   ∈  such that  ⊆  and

 =  ∨ P for a finite partition P ⊆ I of S. Using Lem. 40, pick a finite
partition P 0 ⊆ I of S refining P such that there are 0  0 ∈  where 0 =  ∨ P,
 0 =  ∨ P, %0 is faithful to %, and % 0 is faithful to % . Now 0 =  0 (as

 = ∨P) and 0   0 ⊇  (as by faithfulness 0 ⊇  and  0 ⊇  , and as

 ⊇ ). So 0 ∩  0 ⊇ 
0
 . Hence, by Ax. 2, % 0 matches %0 on 

0
 , hence

is (like %0) faithful to %. As % 0 is faithful to % and % (and as each  ∈  is

objectively equivalent to some  ∈ ), % is faithful to %. ¥

Proof of Lem. 7. Assume Ax. 2 and  %+ , where  ∈  and   ∈ S
 .

(a) Let  ∈  satisfy the conditions (i)—(ii) in Def. 37. I show that  %  .

As  %+ , we have  0 % 0  0 for some 
0 ∈  satisfying these conditions. As 

and  0 harmlessly refine , we may pick finite partitions PP 0 ⊆ I of S such that
 = ∨P and  0 = ∨P 0. Using Lem. 40, there is a partitionQ ⊆ I of S which
refines P and P 0 and contexts  0 ∈  such that  =  ∨Q, 0 =  0 ∨Q, %

is faithful to % , and %0 to % 0. Note that  = 0 =  ∨Q, so that  = 0

and  = 0. Hence, by preference stability (Prop. 1),  %  ⇔ 0 %0  0.

This equivalence reduces to  %  ⇔  0 % 0  0 by faithfulness of % to % and

of %0 to %. As  0 % 0  0, it follows that  %  .

(b) Pick any  ∈  satisfying (i)—(ii) in Def. 37 hold. Pick a context  0 ∈ 

such that  0 =  and  0 = . Clearly, also 
0 ∈  satisfies (i)—(ii) in Def. 37.

Moreover, % 0 is faithful to % by Lem. 6. ¥
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Proof of Lem. 8. Consider a  ∈  and a finite B ⊆ E. For each  ∈ B, pick a
partition P of S refining {} and having the property stated in the definition of
weak incorporability (note that P ⊆ I). Let 1   be all  = |B| members of
B in any given order. We may pick, first, a context  1 ∈  such that 1 = ∨P1

and %1 is faithful to %; second, a context  2 ∈  such that 2 = 1 ∨P2 and

%2 is faithful to %1; and so on for contexts  3  . Let  := . Property (i)

holds because each  is representable in context  , hence in context  . Property

(ii) holds as  =  ∨ P with P := P1 ∨ · · · ∨ P
. Property (iii) holds by

transitivity of faithfulness. ¥

Proof of Lem. 9. This claim follows from Lem. 8 applied to the (finite) set

B = {−1() :  ∈ G  ∈ }, by noting that for any  ∈   ∗ is characterizable
as the set of (2 )∗-measurable function from S to . ¥

Proof of Lem. 10. Assume Ax. 2 and 5, let  ∈  and consider Lem. 5’s

generalized Savage structure, with set of acts denoted  . Let   be as specified.

First assume  %+ . Then, by definition,  0 %+ 0 for some  0 0 ∈  agreeing

with respectively  and  on  and with each other outside . Choose any  ∈ 

taking one value on  and another on  (it exists as || ≥ 2 by Ax. 5). Using
Lem. 9, we pick a  ∈  such that    0 0  ∈  ∗ and  harmlessly refines 

(and % is faithful to %, which is only needed if the modified equivalence is to be

proved). As  ∈  ∗ ,  is representable. As  0 %+ 0, we have  0 % 0 by Lem.
7. Noting that  0 and 0 agree respectively with  and  on  and with each

other outside  (because of inheriting these properties from analogous ones of 
0

and 0), we deduce  %  .

Conversely, assume that  %
 for some  ∈  satisfying the specified

properties. Then there are two functions in  — we may write them as  0 and
0 for certain   ∈  ∗ — such that 

0
 % 

0
 and such that 

0
 and 0 agree with

respectively  and  on  and with each other outside  . From  0 % 
0
 (and

the properties of ) it follows that  0 %+ 0, which in turn implies that  %+ 

since  0 and 0 agree with respectively  and  on  and with each other outside

 (they inherit this behaviour from  and  because  = ()
∗,  = ( )∗ and

 = ( )
∗). ¥

Proof of Lem. 11. Assume Ax. 2 and let  ∈  . Consider Lem. 5’s generalized

Savage structure and an event  ∈ A.
First assume  is non-null. Then there are   ∈  such that  =  and

 6∼+ . Pick any  ∈  taking one value on  and another on  ( exists as

|| ≥ 2 by the fact that  contains distinct functions  ). By Lem. 9, we may

choose a context  ∈  such that    ∈  ∗ and  faithfully refines  (and such
that % is faithful to %, something we need to add when proving the equivalence

in its modified version). As  ∈  ∗ ,  is representable in context  , i.e.,  is
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defined. As  6∼+ , we have  6∼  , which (since  and  agree outside )

shows that  is non-null.

Conversely, assume  is non-null (under % ) for some  ∈  with the specified

properties. Then we may pick two non-indifferent acts in  which agree outside

; we may write them as  and  for some   ∈  ∗ . Since  6∼  , we have

 6∼+  by Lem. 7. So, as  and  agree outside ,  is non-null. ¥

Proof of Lem. 18. Assume Ax. 2, 4 and 5. Let  ∈  and  ⊆ S. By Ax. 5
there are  Â  in .

First assume  %+ . Then there exist   ∈  such that  Â+  and

 %+ . So by Lem. 9 there is a context  ∈  such that   ∈  ∗
(hence,  and  are representable),  harmlessly refines , and % is faithful

to % (the latter is needed when proving the modified equivalence). By Lem. 7,

it follows that  Â  and () % () . In other words  Â  and


\ % 

\
. So,  %  .

Conversely, assume  %  for a  ∈  such that  and  are representable

and  harmlessly refines . It follows that  ∈ E. So by Lem. 8 we may
pick a context  0 ∈  such that  and  are representable,  0 harmlessly refines

, and % 0 is faithful to %. In particular,  0 = . As  %  we have

 0 % 0  0 by belief stability (see Prop. 3, which uses Ax. 2, 4 and 5). Hence

there are 0 0 ∈  0 (= ) such that 
0 Â 0 

0 and 00
00\ 0 % 0 

0
0

00\ 0
.

In other words, (0S) 0 Â 0 (
0
S) 0 and (

0


0

) 0 % 0 (

0


0

) 0. By Lem. 7 it follows

that 0S Â+ 0S (i.e., 
0 Â+ 0) and 0

0

%+ 0

0

. So  %+ . ¥

Proof of Lem. 19. Assume Ax. 2, 4, 5 and 6. Let  %+ , where  ∈  and

 ⊆ S. Let  ∈  satisfy the conditions stated. I show that  %  . As

 %+ , we have  0 % 0  0 for some 
0 ∈  satisfying the analogous conditions,

by Lem. 18 (which uses Ax. 2, 4 and 5). As  and  0 harmlessly refine , we

may pick finite partitions PP 0 ⊆ I of S such that  =  ∨P and  0 =  ∨P 0.
Using Lem. 40, there is a partitionQ ⊆ I of S which refines P and P 0 and contexts
 0 ∈  such that  = ∨Q, 0 =  0∨Q, % is faithful to% , and%0 to % 0.

Note that  = 0 = ∨Q, so that  = 0 and  = 0. So, by comparative-

belief stability (Prop. 3, which uses Ax. 2, 4, 5 and 6),  %  ⇔ 0 %0  0.

This equivalence reduces to  %  ⇔  0 % 0  0 by faithfulness of % to %

and of %0 to %. As  0 % 0  0, it follows that  %  . ¥

Proof of Lem. 20. Assume Ax. 2, 4 and 5. Let R be a robust algebra of

incorporable objective events, and let  ∈ R and  0 ∈  . I assume  %+ 

and have to prove  %+0 . By Lem. 20, as  %+  we have  %  for a  ∈ 

such that  and  are representable and  harmlessly refines . Meanwhile, as

 ∈ R ⊆ I ⊆ E0, by Lem. 8 there exists a  0 ∈  such that  and  are
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representable in context  0 and  0 harmlessly refines 0. As  %  and as 

and  belong to a robust algebra (i.e., R), we have  0 % 0  0 by belief stability

on robust algebras (Prop. 3). So  %+0  by Lem. 18. ¥

Proof of Lem. 21. Assume Ax. 1—6. Let R be as in Ax. 6. Let  and +


( ∈  ) be as defined above.

Claim 1 : +
 |R is fine for all  ∈  . Let  ∈  . The pair ( 

+
 ) represents

%+ on { ∈ S
 :  is E-measurable} (in Lem. 4’s sense). So ( 

+
 |R) represents

%+ on { ∈ S
 :  is R-measurable}. By Lem. 5 (applied with A = R), there is

a fine probability measure on R representing the (belief) relation induced by %+
on R. This measure represents the same (belief) relation on R as +

 |R, and thus
coincides with +

 |R by Lem. 16 and 17. So + |R is fine.
Claim 2:  := +

 |R is the same for all  ∈  . Let  0 ∈  . By Lem. 20, the

functions +
 |R and +

0 |R are ordinally equivalent. Since these are fine probability
measures by Claim 1, they must coincide by Lem. 16 and 17. ¥

Lemma 41 Under Ax. 1, for any context  ∈  , two functions   ∈ S
 are

%+ -comparable (i.e.,  %+  or  %+ ) if and only if both are E-measurable.

Proof. Assume Ax. 1. Let  ∈  and   ∈ S
 . First assume  and  are

comparable under %+ . Then  and  are comparable for some context  ∈ 

such that   ∈  ∗ and  =  ∨ P for some finite partition P ⊆ I of S.
Since   ∈  ∗ ,  and  are (2 )∗-measurable, which implies E-measurability as
(2 )∗ = (2∨P)∗ ⊆ E. Conversely, if  and  are E-measurable, then by Lem. 9
there is a context  ∈  such that   ⊆  ∗ and  harmlessly refines . By Ax.

1,  %  or  %  , which implies that  %+  or  %+  . ¥

Proof of Lem. 22. Assume Ax. 1 and 2. Let   ∈  . Assume  harmlessly

refines . Then E = E by definition of extrapolated algebras. Now suppose that
in addition % is faithful to %. In view of Lem. 41 it suffices to show that %+
and %+ coincide on the set of E - (or respectively E-)measurable functions in S

 .

Let   ∈ S
 be E - (hence, E-)measurable. Then by Lem. 9 there is a context

 ∈  such that   ∈  ∗ and  harmlessly refines  , hence, also . We have

 %+  ⇔  %+  because each side is equivalent to  %  by Lem. 7. ¥

Proof of Lem. 27. Let ( )∈ , , R and R be as specified. Fix  ∈  .

Claim 1: R = ∪∈ :=∨P for some finite partition P⊆R of S(2
 )∗. This claim is

provable analogously to the proof of Lem. 3.

Claim 2: For all  ∈  and finite partitions P ⊆ R of S, there is a  ∈ 

such that  =  ∨ P and  ∗ extends  ∗ . Consider such  and P. Write

P = {1  }. As each  is incorporable and  is agreed, we can let  0 := 

and successively pick  1   ∈  such that, for each  , 
∗
 
extends  ∗ −1 and

59



  =  −1 ∨ { }. Clearly,  ∗ extends  ∗ and  =  ∨ {1 1} ∨ · · · ∨
{ } =  ∨ P.
Claim 3: The measures  ∗ with  =  ∨ P for some finite partition P ⊆ R

of S agree pairwise on the domain overlap. Let    0 ∈  such that  =  ∨ P
and  0 = ∨P 0 for finite partitions PP 0 ⊆ R of S. I show that  ∗ and  ∗ 0 agree
on the domain overlap. By Claim 2, there are  0 ∈  such that  =  ∨ P 0,
0 =  0 ∨ P,  ∗ extends  ∗ , and  ∗0 extends  ∗ 0. It suffices to show that

 ∗ =  ∗0. As  and 0 have the same domain 2
 = 20 (= 2∨P∨P

0
),  = 0

by R2, whence  ∗ =  ∗0.

Claim 4 : All desired properties are met by the function  which to each  ∈ R

assigns  ∗ () for a (by Claim 1 existing and by Claim 3 arbitrary)  ∈  such

that  =  ∨ P for a finite partition P ⊆ R of S. By definition,  extends all
 ∗ such that  =  ∨ P for some finite partition P ⊆ R of S. It remains to
show that  is a probability measure. Clearly, (S) =  ∗ (S) = 1. Now consider
disjoint  ∈ R. By Claim 1 we may pick    0 ∈  such that  ∈ (2 )∗,
 ∈ (2 0 )∗,  =  ∨P and  0 =  ∨Q, for finite partitions PQ ⊆ R of S. By
Claim 2 we may pick a  ∈  such that  =  ∨P ∨Q. Now  ∈ (2)∗ and
() + () =  ∗ () +  ∗ () =  ∗ ( ∪) = ( ∪) ¥

Proof of Lem. 28. Let ( )∈ , , R,  and R be as specified. Fix  ∈  .

The proof proceeds in two steps.

Claim 1: E( ◦ ) ≥ E( ◦ )⇔  %+  for all R-measurable   ∈ S
 .

Let   ∈ S
 be R-measurable. We may pick a finite partition P ⊆ R of S

such that  and  are (2∨P)∗-measurable, and then pick a  ∈  such that

 = ∨P (for details see Claims 1 and 2 in Lem. 27’s proof). W.l.o.g.  = 

by independence of outcome and state awareness. The desired equivalence holds

as E( ◦ ) ≥ E( ◦ )⇔ E( ◦ ) ≥ E( ◦ )⇔  %  ⇔  %+ ,

where the last ‘⇔’ holds by Lem. 7 and the first ‘⇔’ holds as  extends  ∗ and
 is an increasing affine transformation of  (by R1 and the fact that  = ).

Claim 2:  is fine and  is non-constant. Non-constancy of  holds as 

is part of representation in Thm. 1’s sense. Further, as R ⊆ R ⊆ E where by
Lem. 26 R is an algebra as in Ax. 6 (and E is the extrapolated algebra), we
know by Lem. 4 that the restriction of %+ to { ∈ S

 :  is R-measurable} has
a representation ( 0

 
0
) in Lem. 4’s sense; in particular, 

0
 is a fine probability

measure on R. By Claim 1,  represents the same probability order on R as 
0
 .

Hence  =  0
 by Lem. 16 and 17. So  is itself fine. ¥

From now on the restriction to exhaustive states is lifted.

Lemma 42 If an algebra R on S is robust, then w.r.t. any ∆-substructure (∆ ∈
Π) the (trace) algebra R|S∆ on S∆ is robust.

60



Proof. Consider a robust algebra R on S, a ∆ ∈ Π, contexts  0 ∈ ∆, and R|S∆-
determined acts   ∈  and  0 0 ∈ 0 such that  is equivalent to 

0, and  to

0. We must show that  %  ⇔  0 %0 
0. This holds because (i) R is robust,

and (ii) the R|S∆-determinedness of the four acts implies (in fact, is equivalent to)
their R-determinedness. ¥

Lemma 43 Assume Ax. 2. If an objective event  ⊆ S is incorporable, then
w.r.t. any ∆-substructure (∆ ∈ Π)  ∩ S∆ is incorporable.

Proof. Let  ⊆ S be incorporable w.r.t. ( %)∈ and let ∆ ∈ Π. Let

 ∈ ∆. By ’s incorporability, there is a context 0 ∈  (perhaps not in ∆) such

that 0 = ∨{} and %0 is faithful to %. By independence between outcome

and state awareness, we can pick a context  ∈  such that  =  and  = 0.

As X = X and as S = S0 = S (the last identity holds because 0 refines ),
we have  ∈ ∆. So it remains to show two things:

•  =  ∨ { ∩ S∆S∆\( ∩ S∆)}: this holds because

 = 0 =  ∨ {} =  ∨ { ∩ S∆S∆\( ∩ S∆)}

• % is faithful to %: As %0 is faithful to %, 0 ⊇ , i.e., 0 ⊇  . So,

as also 0 =  , the relation % is the restriction of %0 to  (⊆ 0) by

preference stability (see Prop. 1, which uses Ax. 2). Hence, not only %0,

but also % is faithful to %. ¥

Proof of Lem. 30. Let ∆ ∈ Π. The∆-substructure trivially inherits the first five

axioms. We now show that also Ax. 6 is inherited, given Ax. 2. Assume Ax. 2 and

6. Pick an algebra R on S as in Ax. 6 (for the general structure). I show that the
substructure satisfies Ax. 6 in virtue of the trace algebraR|S∆. By Lem. 42 and 43,
R|S∆ is, w.r.t. the substructure, a robust algebra (on S∆) composed of incorporable
objective events. Now consider a  ∈ ∆, acts  Â  in , and an  ∈ . By Ax.

6 for the general structure, we may partition S into some 1   ∈ R such that,
in some context 0 ∈  where 0 = ∨{1  } (so each  is representable by

an  ⊆ 0) and 0 ⊇  (so 0 contains acts 
0 equivalent to  and 0 equivalent

to ), we have  00\


Â0 
0 and  0 Â0 

0
0\


for all . To complete the

proof of Ax. 6 for the substructure, it suffices to note that (i) 0 ∈ ∆ because

S0 = S (as 0 = ∨{1  }), and (ii) S∆ is partitioned into (the non-empty
sets among) 1 ∩ S∆   ∩ S∆ ∈ R|S∆, where each such  ∩ S∆ is represented
by . ¥

Proof of Lem. 32. Assume Ax. 1—6. LetR, ()∈ , and (∆)∆∈Π be as specified.
Each ∆ induces a function ∆ on R via ∆() := ∆( ∩ S∆) ( ∈ R).
Claim 1: Each ∆ (∆ ∈ Π) is a fine probability measure. Let ∆ ∈ Π. First,

∆ is a probability measure as ∆ is one, or more precisely, as ∆(S) = ∆(S∆) = 1
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and as for disjoint  ∈ R we have ∆( ∪ ) = ∆(( ∪ ) ∩ ∆) = ∆(( ∩
∆) ∪ ( ∩ ∆)) = ∆( ∩ ∆) + ∆( ∩ ∆) = ∆() + ∆(). Second, I show

fineness. Let   0. As ∆ is fine, we may partition S∆ into 1   ∈ R|S∆
such that ∆()   for all . Each  is in R|S∆; so we write  =  ∩ S∆ for
 ∈ R. We may take 1   to partition S, by the argument in fn. 62. Now
∆() = ∆( ∩ S∆) = ∆()   for all . So ∆ is fine.

Claim 2 : ∆ is the same for all ∆ ∈ Π. Let ∆∆0 ∈ Π; we show that

∆ = ∆0. By Claim 1 and Lem. 16 and 17, it suffices to show that ∆ and ∆0

are ordinally equivalent. Let  ∈ R. As  and  are incorporable, we may

pick a context  ∈ ∆ in which  and  are representable. The events   (⊆ )

representing  and  respectively also represent  ∩ S∆ and  ∩ S∆ respectively.
Now (*) ∆() ≥ ∆() ⇔  %  since ∆() ≥ ∆() ⇔ ∆( ∩ S∆) ≥
∆(∩S∆)⇔ () ≥ ()⇔  %  where the second equivalence holds as

∆ is agreed among ()∈∆ and and represent∩S∆ and∩S∆ respectively.
Analogously, as  and  are incorporable we may pick a context 0 ∈ ∆0 where
 and  are representable; as before, (**) ∆0() ≥ ∆0() ⇔ 0 %0 0  As 

and  belong to the robust algebra R,  %  ⇔ 0 %0 0 by Prop. 5, and so

∆() ≥ ∆()⇔ ∆0() ≥ ∆0() by (*) and (**), as required.

Claim 3 : The (by Claim 2 ∆-independent) probability measure  :≡ ∆ is

agreed among the  (  ∈  ). For any  ∈  , recall that  ∗ is the function
of (representable) objective events  ⊆ S induced by ; let 

∗∗
 be the ana-

logous function induced by  w.r.t. the ∆-substructure. So  ∗∗ is a func-

tion of (representable)  ⊆ S∆
. Now let  ∈ R,  ∈  , and ∆ := ∆.

As ∆ is agreed among ()∈∆, there is a  ∈ ∆ such that  ∗∗ extends  ∗∗ ,
 = ∨{(∩S∆)S∆\(∩S∆)} and  ∗∗ (∩S∆) = ∆(∩S∆). Turning to the
general structure, we must show that (i)  ∗ extends 

∗
 , (ii)  =  ∨ {S\},

and (iii)  ∗ () = ∆(). Claim (i) holds as for all  ⊆ S in the domain of  ∗ ,
hence of  ∗ , 

∗
 () =  ∗∗ ( ∩ S∆) =  ∗∗ ( ∩ S∆) =  ∗ () where the second

equality holds as  ∗∗ extends  ∗∗ , while the first and third hold as, in each of
the contexts  and  ,  has the same representation as  ∩ S∆. Claim (ii) holds

as  =  ∨ {( ∩ S∆)S∆\( ∩ S∆)} =  ∨ {S\}. Claim (iii) holds as

 ∗ () =  ∗∗ ( ∩ S∆) = ∆( ∩ S∆) = ∆() = () ¥

Proof of Lem. 35. Assume Ax. 1—6. Let  0R   be as given. Note that R|S
is included in the extrapolated algebra E, as by Lem. 43 R|S consists of (w.r.t.
the ∆-substructure) incorporable objective events. As  and  are R-measurable,
S and S are R|S-measurable, so (as R|S ⊆ E) E-measurable. Hence by Lem.
9 (applied to the substructure) we may pick a  ∈ ∆ such that S = ̂∗ and
S = ̂∗ for certain ̂  ̂ ∈  and  harmlessly refines ; so, by Lem. 7,

S %+ S ⇔ ̂ % ̂. By analogous arguments, we may pick a 
0 ∈ ∆0 such that

S0 = ̃∗ and S0 = ̃∗ for certain ̃  ̃ ∈  0 and  0 harmlessly refines 0; so,
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S0 %
+
0 S0 ⇔ ̃ % 0 ̃. As S %+ S ⇔ ̂ % ̂ and S0 %

+
0 S0 ⇔ ̃ % 0 ̃, it

suffices to show that ̂ % ̂ ⇔ ̃ % 0 ̃. This holds since ̂ and ̃ are corresponding

R-measurable acts (as the R-measurable function  equals ̂∗ on S = S and ̃∗

on S0 = S 0) and since also ̂ and ̃ are corresponding R-measurable acts (as the
R-measurable function  equals ̂∗ on S = S and ̃∗ on S0 = S 0). ¥

Proof of Lem. 37. Let ( )∈ ,  and R be as assumed. Let ∆ ∈ Π. w.r.t.

the∆-substructure, the subsystem ( )∈∆ is still an EU rationalization obeying
R1 and R2, as all this is inherited from the full system. It suffices to show R3.

Now

 ∩ S∆ =  ∩ S∆ ⇒ () = () for all  ∈ R (2)

because any  ∈ R are (by ’s agreedness) representable in some context  ∈ ∆,

for which () =  ∗ () =  ∗ ( ∩ S∆) (the last equality holds as  and  ∩ S∆
are represented by the same subjective event) and similarly () =  ∗ () =
 ∗ ( ∩S∆). Now the function  induces a function ∆ : R|S∆ → [0 1] by defining,

for any  ∈ R|S∆, ∆() := (), where  is some (hence by (2) any) member of

R such that  ∩ S∆ = . By construction, ∆( ∩ S∆) = () for all  ∈ R. So
the following two observations complete the proof.

Claim 1: ∆ is a fine probability measure. ∆ inherits these properties from .

Indeed, firstly, ∆ is a probability measure, since ∆(S∆) = (S) = 1, and since

any disjoint 0 ∈ R|S∆ may be written as  =  ∩ S∆ and 0 = 0 ∩ S∆ for
some (w.l.o.g.) disjoint sets 0 ∈ R, so that

∆( ∪0) = ( ∪0) = () + (0) = () + (0)

Secondly, ∆ is fine, since for each positive   0 we may (by ’s fineness) partition

S into 1   ∈ R such that ()   for all  = 1  ; consequently S∆ is
partitioned63 into 1 ∩S∆  ∩S∆ ∈ R|S∆ and ∆( ∩S∆) = ()   for all

.

Claim 2: ∆ is agreed (w.r.t. the ∆-substructure). For any  ∈ ∆, let  ∗ be
(as usual) the function of representable objective events induced by , and let 

∗∗


be the analogous function defined w.r.t. the ∆-substructure; so  ∗ is a function of
(representable) subsets of S, whereas  ∗∗ is a function of (representable) subsets of

S∆. Now consider a  ∈ ∆ and an  ∈ R|S∆. We need to show that there is a  ∈ ∆

such that (a)  ∗∗ extends  ∗∗ , (b)  = ∨ {S∆\}, and (c)  ∗∗ () = ∆().

Write  as  ∩ S∆ for some  ∈ R. As  is agreed w.r.t. the general structure,
there is a  ∈  such that  ∗ extends 

∗
 ,  =  ∨ {}, and  ∗ () = ().

We may assume w.l.o.g. that  ∈ ∆, as one may verify using independence between

outcome and state awareness and Rem. 21. Condition (a) holds because, when

restricted to subsets of S∆,  ∗ coincides with  ∗∗ and  ∗ coincides with  ∗∗ .

63in the broad sense that allows some of 1 ∩ S∆   ∩ S∆ to be empty
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Condition (b) holds because  ∨ {} =  ∨ {S∆\}. Condition (c) holds
because, as  ⊆ S∆, we have  ∗∗ () =  ∗ () and () = ∆(). ¥
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